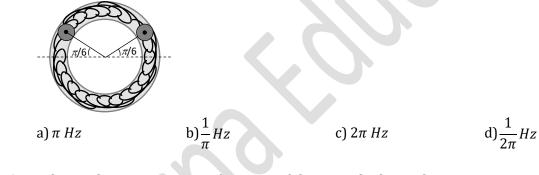


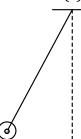
Chapter : OSCILLATIONS


Assignment 2

Class 11

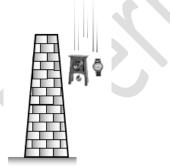
Address: H-81, South Extension Part-1, New Delhi-110049 II www.prernaeducation.co.in II 9205365731

Two identical balls *A* and *B* each of mass 0.1 *kg* are attached to two identical massless springs. 1. The spring mass system is constrained to move inside a rigid smooth pipe bent in the form of circle as shown in the figure. The pipe is fixed in a horizontal plane. The centres of the balls can move in a circle of radius 0.06 m. Each spring has a natural length of 0.06π m and force constant 0.1N/m. Initially both the balls are displaced by an angle $\theta = \pi/6$ radian with respect to the diameter PQ of the circle and released from rest. The frequency of oscillation of the ball B is


What is the maximum acceleration of the particle doing the SHM? 2.

 $y = 2\sin\left[\frac{\pi t}{2} + \phi\right]$ where 2 is in cm. b) $\frac{\pi^2}{2}$ cms⁻² c) $\frac{\pi}{4}$ cms⁻² d) $\frac{\pi}{4}$ cms⁻² a) $\frac{\pi}{2}$ cms⁻²

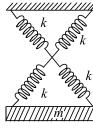
- A particle moves according to the law, $= r\cos\frac{\pi t}{2}$. The distance covered by it the time interval 3. between t= 0 to t=3s is c) 3r d)4r
 - b)2r a)r
- How does the time period of pendulum vary with length 4.


a)
$$\sqrt{L}$$
 b) $\sqrt{\frac{L}{2}}$ c) $\frac{1}{\sqrt{L}}$ d) $2L$

- 5. A force of 6.4 *N* stretches a vertical spring by 0.1 *m*. The mass that must be suspended from the spring so that it oscillates with a period of $\left(\frac{\pi}{4}\right)s$. is
 - a) $\left(\frac{\pi}{4}\right) kg$ b) 1kg c) $\left(\frac{1}{\pi}\right) kg$ d) 10kg
- 6. A metal rod of length *L* and mass *m* is pivoted at one end. A thin disk of mass *M* and radius R(< L) is attached at its centre to the free end of the rod. Consider two ways the disc is attached **case** *A* the disc is not free to rotate about its centre and **case** *B* the disc is free to rotate about its centre. The rod-disc system performs SHM in vertical plane after being released from the same displaced position. Which of the following statement(s) is/are true?

a) Restoring torque in case A=Restoring torque in case B

- Restoring torque in case A<Restoring
 b) torque in case B
 c) Angular frequency for case A<Angular
- Angular frequency for case A<Angularfrequency for case B
- d) frequency for case *B*
- 7. A man having a wrist watch and a pendulum clock rises on a *TV* tower. The wrist watch and pendulum clock by chance fall from the top of the tower. Then



- a) Both will keep correct time during the fall
- b) Both will kept incorrect time during the fall
- c) Wrist watch will keep correct time and clock will become fast
- d) Clock will stop but wrist watch will function normally

8. For a particle executing SHM, the kinetic energy k is given by $k = k_0 \cos^2 \omega t$. The equation of its displacement can be

a)
$$\left(\frac{k_0}{m\omega^2}\right)^{1/2} \sin \omega t$$
 b) $\left(\frac{2k_0}{m\omega^2}\right)^{1/2} \sin \omega t$ c) $\left(\frac{2\omega^2}{mk_0}\right)^{1/2} \sin \omega t$ d) $\left(\frac{2k_0}{m\omega}\right)^{1/2} \sin \omega t$

9. As shown in figure, a simple harmonic motion oscillator having identical four springs has time period

a)
$$T = 2\pi \sqrt{\frac{m}{4k}}$$
 b) $T = 2\pi \sqrt{\frac{m}{2k}}$ c) $T = 2\pi \sqrt{\frac{m}{k}}$ d) $T = 2\pi \sqrt{\frac{2m}{k}}$

- 10. A particle of mass 200 g executes SHM. The restoring force is provided by a spring of force constant 80 N/m. The time period of oscillation is
 a) 0.31 s
 b) 0.15 s
 c) 0.05 s
 d) 0.02 s
- 11. The variation of potential energy of harmonic oscillator is as shown in figure. The spring constant is

- 12. The bob of a simple pendulum is a spherical hollow ball filled with water. A plugged hole near the bottom of the oscillating bob gets suddenly unplugged. During observation, till water is coming out, the time period of oscillation would
 - a) First increase and then decrease to the origin value
 - b) First decrease and then increase to the origin value
 - c) Remain unchanged
 - d) Increase towards a saturation value
- 13. Length of a simple pendulum is l and its maximum angular displacement is θ , then its maximum K.E. is

```
a) mgl\sin\theta b) mgl(1 + \sin\theta) c) mgl(1 + \cos\theta) d) mgl(1 - \cos\theta)
```

14.	 A simple pendulum has time period T. The bob is given negative charge and surface below given positive charge. The new time period will be 			
	a) Less than T	b) Greater than T	c) Equal to <i>T</i>	d) Infinite
15.	The displacement of a particle executing SHM is given by $y=0.25$ sin 200t cm. the maximum speed of the particle is			
	a) 200 cms ⁻¹	b) 100 cms ⁻¹	c) 50 cms ⁻¹	d) 5.25 cms ⁻¹
16.	5. Graph between velocity and displacement of a particle, executing S.H.M. is			
	a) A straight line	b)A parabola	c) A hyperbola	d) An ellipse
17.	7. Displacement-time equation of a particle executing SHM is, $x = 4 \sin \omega t + 3 \sin (\omega t + \pi/3)$. Here x is in centimeter and t in second. The amplitude of oscillation of the particle is approximately			
	a) 5 cm	b)6 cm	c) 7 cm	d) 9 cm
18.	8. A plate oscillates with time period T' . Suddenly, another plate put on the first time, then time period			
	a) Will decrease	b) Will increase	c) Will be same	d) None of these

19. A mass *M* is suspended from a light spring. An additional mass *m* added displaces the spring further by a distance *x*. Now the combined mass will oscillate on the spring with period

a)
$$T = 2\pi \sqrt{\frac{mg}{X(M+m)}}$$

b) $T = 2\pi \sqrt{\frac{(M+m)X}{mg}}$
c) $T = \pi/2 \sqrt{\frac{mg}{X(M+m)}}$
d) $T = 2\pi \sqrt{\frac{(M+m)}{mg}}$

20. An ideal spring with spring-constant *K* is hung from the ceiling and a block of mass *M* is attached to its lower end. The mass is released with the spring initially unstretched. Then the maximum extension in the spring is

a)
$$4 Mg/K$$
 b) $2 Mg/K$ c) Mg/K d) $Mg/2K$