

Chapter: WAVES

Assignment 1

Class 11

CLASS: XITH DATE:

SUBJECT : PHYSICS DPP NO. :1

		Topic:-	WAVES			
1.	Two sound waves (expressed in CGS units) given by $y_1 = 0.3 \sin \frac{2\pi}{\lambda} (vt - x)$ and $y_2 =$					
	$0.4 \sin \frac{2\pi}{\lambda} (vt - x + \theta)$ interfere. The resultant amplitude at a place where phase difference is					
	$\pi/2$ will be					
	a) 0.7 <i>cm</i>	b) 0.1 <i>cm</i>	c) 0.5 <i>cm</i>	$d)\frac{1}{10}\sqrt{7} cm$		
2.	Sound waves of wavel a) Seismic waves	ength greater than that o	of audible sound are call c) Ultrasonic waves	ed d) Infrasonic waves		
3.	A bus is moving with a velocity of $5ms^{-1}$ towards a huge wall. The driver sounds a horn of frequency 165 Hz. If the speed of sound in air is 335 ms^{-1} , the number of beats heard per second by a passenger inside the buss will be					
	a) 3	b)4	c) 5	d)6		
4.	When a sound wave of frequency 300 Hz passes through a medium, the maximum displacement of a particle of the medium is 0.1 cm. the maximum velocity of the particle is equal to					
	a) 60 cm/s	b) 30 cm/s	c) 60 π cm/s	d) 30π cm/s		
5.	Standing waves are produced in a $10 m$ long stretched string. If the string vibrates in 5 segments and the wave velocity is $20 m/s$, the frequency is					
	a) 2 Hz	b) 4 <i>Hz</i>	c) 5 <i>Hz</i>	d) 10 <i>Hz</i>		
6.	The fundamental frequencies of an open and a closed tube, each of same length L with v as the speed of sound in air, respectively are					
	a) $\frac{v}{2L}$ and $\frac{v}{L}$	= -	c) $\frac{v}{2L}$ and $\frac{v}{4L}$	d) $\frac{v}{4L}$ and $\frac{v}{2L}$		
7.	Energy is not carried by which of the following waves					
	a) Stationary	b) Progressive	c) Transverse	d) Electromagnetic		
8.		e of an ideal gas is increa	=	-		

	a) −73°C	b) 27°C	c) 127°C	d)327°C		
9.	Find the fundamental fr	requency of a closed pip	e, if the length of the air	column is 42 m. (speed		
of sound in air = $332 m/sec$)						
	a) 2 <i>Hz</i>	b) 4 <i>Hz</i>	c) 7 <i>Hz</i>	d) 9 <i>Hz</i>		
	u) 2 112	0) 1112	0) 7 112	u) > 112		
10	When 2 tuning forks (fork 1 and fork 2) are sounded simultaneously, 4 beats s^{-1} are heard.					
10.						
	Now, some tape is attached on the prong of fork 2. When the tuning forks are sounded again, 6					
	beats s ⁻¹ are heard if the frequency of fork 1 is 200 Hz, then what was the original frequency					
	fork 2?					
	a) 196 Hz	b) 200 Hz	c) 202 Hz	d) 204 Hz		
11.	Sound of the wavelength λ passes through a Quincke's tube, which is adjust to give a maximum					
	intensity I_0 . Through what distance should the sliding tube be moved to give intensity $I_0/2$?					
	a) $\lambda/2$	b) $\lambda/3$	c) $\lambda/4$	$d)\lambda/8$		
	<i>y</i> ,	<i>y</i> 1				
12	Two waves represented by y=a sin (ωt - kx) and y= a cos (ωt -kx) are superposed. The resultant					
12.	wave will have an amplitude					
	-		2.2	1) 7		
	a) a	b) $\sqrt{2}a$	c) 2a	d) Zero		
13.	In a resonance pipe the first and second resonance are obtained at depths 22.7 cm and 70.2 cm					
	respectively. What will	be the end correction?				
	a) 1.05 cm	b) 115.5 cm	c) 92.5 cm	d) 113.5 cm		
14.	4. A transverse wave is described by the equation $y = y_0 \sin 2\pi \left[ft - \frac{x}{\lambda} \right]$. The maximum particles					
			L 713	F		
		times the wave velocity		D 1 /2		
	a) $\lambda = \pi y_0/4$	$b)\lambda = 2\pi y_0$	c) $\lambda = \pi/y_0$	$d)\lambda = \pi y_0/2$		
15.	A tuning fork produces waves in a medium. If the temperature of the medium changes, then					
	which of the following	will change				
	a) Amplitude	b) Frequency	c) Wavelength	d) Time-period		
16.	From a point source, if amplitude of waves at a distance r is A, its amplitude at a distance $2r$					
	will be					
	a) A	b) 2 <i>A</i>	c) A/2d)	A/4		
				,		
17.	If T is the reverberation time of an auditorium of volume V then					
	4		c) $T \propto V^2$	d) $T \propto V$		
	a) $T \propto \frac{1}{V}$	b) $T \propto \frac{1}{V^2}$	C) I Q V	u) I & V		
18.	In an experiment, it was found that string vibrates in n loops when a mass M is placed o the					
	pan. What mass should be placed on the pa to make it vibrate in $2n$ loops, with same frequency.					
	Neglect the mass of the pan.					
	a) <i>M</i> /4b)	4 <i>M</i> c)	2 <i>M</i> d)	M/2		

19. A source of sound emits waves with frequency f Hz and speed V m/sec. Two observers move away from this source in opposite directions each with a speed 0.2 V relative to the source. The ratio of frequencies heard by the two observers will be

a) 3:2

b)2:3

c) 1 : 1

d)4:10

20. Speed of sound at constant temperature depends on

a) Pressure

b) Density of gas

c) Above both

d) None of the above