PE PRERNA EDUCATION

Chapter : OSCILLATIONS

Assignment 1

Class 11

CLASS : XITH
SUBJECT : PHYSICS
DATE:
DPP NO. : 1

Topic :-OSCILLATIONS

1. A small sphere carrying a charge q is hanging in between two parallel plates by a string of length L. Time period of pendulum is T_{0}. When parallel plates are charged, the time period changes to T.
The ratio T / T_{0} is equal to

a) $\left(\frac{\mathrm{g}+\frac{q E}{m}}{\mathrm{~g}}\right)^{1 / 2}$
b) $\left(\frac{\mathrm{g}}{\mathrm{g}+\frac{q E}{m}}\right)^{3 / 2}$
c) $\left(\frac{\mathrm{g}}{\mathrm{g}+\frac{q E}{m}}\right)^{1 / 2}$
d) None of these
2. The bob of a simple pendulum executes simple harmonic motion in water with a period t, while the period of oscillation of the bob is t_{0} in air. Neglecting frictional force of water and given that the density of the bob is $\left(4 / 3 \times 1000 \mathrm{~kg}-\mathrm{m}^{3}\right)$. What relationship between t and t_{0} is true?
a) $t=t_{0}$
b) $t=t_{0} / 2$
c) $t=2 t_{0}$
d) $t=4 t_{0}$
3. As a body performs S.H.M., its potential energy U. Varies with time as indicated in
a)

b)

c)

4. Two simple pendulum of length 0.5 m and 20 m respectively are given small linear displacement in one direction at the same time. They will again be in the phase when the pendulum of shorter length has completed... oscillations.
a) 5
b) 1
c) 2
d) 3
5. A simple harmonic oscillator has a period of 0.01 s and an amplitude of 0.2 m . The magnitude of the velocity in $m \mathrm{sec}^{-1}$ at the centre of oscillation is
a) 20π
b) 100
c) 40π
d) 100π
6. A body has a time period T_{1} under the action of one force and T_{2} under the action of another force, the square of the time period when both the forces are acting in the same direction is
a) $T_{1}^{2} T_{2}^{2}$
b) $\mathrm{T}_{1}^{2} / \mathrm{T}_{2}^{2}$
c) $T_{1}^{2}+T_{2}^{2}$
d) $T_{1}^{2} T_{2}^{2} /\left(T_{1}^{2}+T_{2}^{2}\right)$
7. For a simple pendulum the graph between L and T will be
a) Hyperbola
b) Parabola
c) A curved line
d) A straight line
8. A mass of 4 kg suspended from a spring of force constant $800 \mathrm{Nm}^{-1}$ executes simple harmonic oscillations. If the total energy of the oscillator is $4 J$, the maximum acceleration (in ms^{-2}) of the mass is
a) 5
b) 15
c) 45
d) 20
9. A spring of force constant k is cut into two pieces such that one piece is double the length of the other. Then the long piece will have a force constant of
a) $(2 / 3) k$
b) $(3 / 2) k$
c) $3 k$
d) $6 k$
10. There is a body having mass m and performing S.H.M. with amplitude a. There is a restoring force $F=-K x$, where x is the displacement. The total energy of body depends upon
a) K, x
b) K, a
c) K, a, x
d) K, a, v
11. If a body of mass 0.98 kg is made to oscillate on a spring of force constant $4.84 \mathrm{~N} / \mathrm{m}$, the angular frequency of the body is
a) $1.22 \mathrm{rad} / \mathrm{s}$
b) $2.22 \mathrm{rad} / \mathrm{s}$
c) $3.22 \mathrm{rad} / \mathrm{s}$
d) $4.22 \mathrm{rad} / \mathrm{s}$
12. The amplitude of vibration of a particle is given by $a_{m}=\left(a_{0}\right) /\left(a \omega^{2}-b \omega+c\right)$; where a_{0}, a, b and c are positive. The condition for a single resonant frequency is
a) $b^{2}=4 a c$
b) $b^{2}>4 a c$
c) $b^{2}=5 a c$
d) $b^{2}=7 a c$
13. The period of oscillation of a simple pendulum of constant length at earth surface is T. Its period inside a mine is
a) Greater than T
b) Less than T
c) Equal to T
d) Cannot be compared
14. In a simple pendulum, the period of oscillation T is related to length of the pendulum l as
a) $\frac{l}{T}=$ constant
b) $\frac{l^{2}}{T}=$ constant
c) $\frac{l}{T^{2}}-$ constant
d) $\frac{l^{2}}{T^{2}}=$ constant
15. Starting from the origin a body oscillates simple harmonically with a period of 2 s . After what time will its kinetic energy be 75% of the total energy?
a) $\frac{1}{6}$ s
b) $\frac{1}{4}$ s
c) $\frac{1}{3}$ s
d) $\frac{1}{12} \mathrm{~s}$
16. A mass m is suspended from a spring of length l and force constant K. The frequency of vibration of the mass is f_{1}. The spring is cut into two equal parts and the same mass is suspended from one of the parts. The new frequency of vibration of mass is f_{2}. Which of the following relations between the frequencies is correct
a) $f_{1}=\sqrt{2} f_{2}$
b) $f_{1}=f_{2}$
c) $f_{1}=2 f_{2}$
d) $f_{2}=\sqrt{2} f_{1}$
17. How does time period of a pendulum very with length?
a) \sqrt{l}
b) $\sqrt{\frac{l}{2}}$
c) $\frac{1}{\sqrt{l}}$
d) $2 l$
18. A particle is vibrating in a simple harmonic motion with an amplitude of 4 cm . At what displacement from the equilibrium position, is its energy half potential and half kinetic
a) 1 cm
b) $\sqrt{2} \mathrm{~cm}$
c) 3 cm
d) $2 \sqrt{2} \mathrm{~cm}$
19. A simple pendulum has a time period T_{1} when on the earth's surface and T_{2} when taken to a height $2 R$ above the earth's surface where R is the radius of the earth. The value of (T_{1} / T_{2}) is
a) $1 / 9$
b) $1 / 3$
c) $\sqrt{3}$
d) 3
20. A ball of mass $(m) 0.5 \mathrm{~kg}$ is attached to the end of a string having length (L) 0.5 m . The ball is rotated on a horizontal circular path about vertical axis. The maximum tension that the string can bear is 324 N . The maximum possible value of angular velocity of ball (in radian/s) is

a) 9
b) 18
c) 27
d) 36
