

Chapter: OSCILLATIONS

Assignment 1

Class 11

CLASS : XITH SUBJECT : PHYSICS DATE : DPP NO. : 1

Topic:-.OSCILLATIONS

1. A small sphere carrying a charge q is hanging in between two parallel plates by a string of length L. Time period of pendulum is T_0 . When parallel plates are charged, the time period changes to T. The ratio T/T_0 is equal to

a)
$$\left(\frac{g + \frac{qE}{m}}{g}\right)^{1/2}$$
 b) $\left(\frac{g}{g + \frac{qE}{m}}\right)^{3/2}$ c) $\left(\frac{g}{g + \frac{qE}{m}}\right)^{1/2}$ d) None of these

2. The bob of a simple pendulum executes simple harmonic motion in water with a period t, while the period of oscillation of the bob is t_0 in air. Neglecting frictional force of water and given that the density of the bob is $(4/3 \times 1000 \text{ kg} - \text{m}^3)$. What relationship between t and t_0 is true?

a)
$$t = t_0$$
 b) $t = t_0/2$ c) $t = 2t_0$ d) $t = 4t_0$

3. As a body performs S.H.M., its potential energy U. Varies with time as indicated in

4. Two simple pendulum of length 0.5 m and 20 m respectively are given small linear displacement in one direction at the same time. They will again be in the phase when the pendulum of shorter length has completed... oscillations.

	a) 5	b) 1	c) 2	d)3		
5.	A simple harmonic oscillator has a period of 0.01 s and an amplitude of 0.2 m . The magnit of the velocity in $m \sec^{-1}$ at the centre of oscillation is					
	a) 20π	b) 100	c) 40π	d) 100π		
6.	A body has a time period T_1 under the action of one force and T_2 under the action of another force, the square of the time period when both the forces are acting in the same direction is					
	a) $T_1^2 T_2^2$	b) T_1^2/T_2^2	c) $T_1^2 + T_2^2$	d) $T_1^2 T_2^2 / (T_1^2 + T_2^2)$		
7.	For a simple pendulum the graph between L and T will be					
	a) Hyperbola	b) Parabola	c) A curved line	d) A straight line		
8.	A mass of 4 kg suspended from a spring of force constant 800 Nm^{-1} executes simple harm oscillations. If the total energy of the oscillator is $4J$, the maximum acceleration (in ms^{-2}) mass is					
	a) 5	b) 15	c) 45	d) 20		
9.	A spring of force constant k is cut into two pieces such that one piece is double the length of the other. Then the long piece will have a force constant of					
	a) $(2/3)k$	b) (3/2) <i>k</i>	c) 3 <i>k</i>	d) 6 <i>k</i>		
10. There is a body having mass m and performing S.H.M. with amplitude a . There is a force $F = -Kx$, where x is the displacement. The total energy of body depends up						
	a) <i>K</i> , <i>x</i>	b) K, a	c) K, a, x	d) <i>K</i> , <i>a</i> , <i>v</i>		
11.	If a body of mass 0.98 <i>k</i> angular frequency of th	ant $4.84 N/m$, the				
	a) 1.22 <i>rad/s</i>	b) 2.22 rad/s	c) 3.22 <i>rad/s</i>	d) 4.22 rad/s		
12.	The amplitude of vibration of a particle is given by $a_m=(a_0)/(a\omega^2-b\omega+c)$; where a_0,a,b and c are positive. The condition for a single resonant frequency is					
	a) $b^2 = 4ac$	b) $b^2 > 4ac$	c) $b^2 = 5ac$	$d) b^2 = 7ac$		
13.	The period of oscillation of a simple pendulum of constant length at earth surface is T . Its period inside a mine is					
	a) Greater than T	b) Less than T	c) Equal to T	d) Cannot be compared		
14.	In a simple pendulum, the period of oscillation T is related to length of the pendulum l as a) $\frac{l}{T} = \text{constant}$ b) $\frac{l^2}{T} = \text{constant}$ c) $\frac{l}{T^2} - \text{constant}$ d) $\frac{l^2}{T^2} = \text{constant}$					
	a) $\frac{\iota}{T}$ = constant	b) $\frac{\iota}{T}$ = constant	c) $\frac{\iota}{T^2}$ – constant	d) $\frac{\iota}{T^2}$ = constant		

15.	Starting from the origin a body oscillates simple harmonically with a period of 2 s. After					
	what time will its kinetic energy be 75% of the total energy?					
	a) $\frac{1}{6}$ s	b) $\frac{1}{4}$ s	c) $\frac{1}{2}$ s	$d)\frac{1}{12}s$		
	6	4	3	12		

16. A mass *m* is suspended from a spring of length *l* and force constant *K*. The frequency of vibration of the mass is f_1 . The spring is cut into two equal parts and the same mass is suspended from one of the parts. The new frequency of vibration of mass is f_2 . Which of the following relations between the frequencies is correct

a)
$$f_1 = \sqrt{2}f_2$$

b)
$$f_1 = f_2$$

c)
$$f_1 = 2f_2$$

$$d) f_2 = \sqrt{2} f_1$$

17. How does time period of a pendulum very with length?

a)
$$\sqrt{l}$$

b)
$$\sqrt{\frac{l}{2}}$$

c)
$$\frac{1}{\sqrt{l}}$$

18. A particle is vibrating in a simple harmonic motion with an amplitude of 4 cm. At what displacement from the equilibrium position, is its energy half potential and half kinetic

b)
$$\sqrt{2}$$
 cm

d)
$$2\sqrt{2}$$
 cm

19. A simple pendulum has a time period T_1 when on the earth's surface and T_2 when taken to a height 2R above the earth's surface where R is the radius of the earth. The value of (T_1/T_2) is

b)
$$1/3$$

c)
$$\sqrt{3}$$

20. A ball of mass (m)0.5 kg is attached to the end of a string having length (L)0.5 m. The ball is rotated on a horizontal circular path about vertical axis. The maximum tension that the string can bear is 324 N. The maximum possible value of angular velocity of ball (in radian/s) is

b) 18