CLASS XI-CHEMISTRY CHEMICAL BONDING ## **ASSIGNMENT-1** ## **NUMERICAL QUESTIONS:** **Q.1** In the following compound (X), the bond distance between any two carbon atoms are same and equal to 140 pm. Determine the length (L) of the compound (X) in pm in nearest possible integers. Given: $\sqrt{3} = 1.732$ The structural formula of (X) is as follows: - Q.2 C = O group moment is 2.3 D and —CH₃ group moment is 0.4 D. Determine the dipole moment of $(CH_3)_2$ CO in C-m \times 10^{30} in nearest possible integer - Q.3 The geometry of $Pt(NH_3)_2Cl_2$ is square planar. It has two geometrical isomers cis- and trans. The distance between platinum and chlorine atom is 232 pm. What is the distance between the two Clatoms in the cis isomer of $Pt(NH_3)_2Cl_2$ in pm in nearest possible integers. (Given $\sqrt{2} = 1.414$) - Q.4 Find out distance between two iodine atoms (in Å) in trans-Ethene. (given \rightarrow Bond length of C = C is 1.33 Å, Bond length of C–I bond is 2.10 Å) - - Q.5 How many of the following are paramagnetic C_2 , B_2 , O_2^{-2} , BN, Cl_2^+ & NO^+ . - Q.6 Find out number p-orbitals of Boron atom which participate in hybridisation in B₂H₆. (number of p-orbitals taking part in hybridisation per atom of Boron) - **Q.7** How many statement of the followings are false - (I) AlCl₃ exists as Al₂Cl₆ in vapour state - (II) All the Al-Cl bonds in Al₂Cl₆ are equivalent - (III) Borax when heated with Ammonium chloride forms ammonium tetraborate - (IV) AlF₃ is a high m.pt. solid while AlCl₃ is a low m.pt volatile solid - **Q.8** In $(HF)_4$ the number of H bonds is - **Q.9** The number of resonating structures exist for the azide ion, N_3^- are **Q.10** Determine the energy released due to formation of MgS lattice in kcal/mol in nearest possible integers from the following data. $$\Delta_{form} H (MgS) = -82.2 \text{ kcal/mol.}$$ $$\Delta_{\text{sub}}$$ H (Mg) = 36.5 kcal/mol. for Mg, $$IE_I + IE_{II} = 520.6$$ kcal/mol. for $$S_8$$, Δ_{atom} H = 1065.6 kcal/mol. For S, $$\Delta_{eg} H_I + \Delta_{eg} H_{II} = -72.4 \text{ kcal/mol.}$$ **Q.11** Proton affinity is the enthalpy change due to acceptance of 1 mole of $H^+(g)$ by a species. Determine the proton affinity of NH₃ (g) from the following data in kcal/mol in nearest possible integers. LE of NH₄ F (s) = $$-181$$ kcal/mol $$\Delta_{\text{form}}$$ of NH₄ F (s) = -112 kcal/mol $$\Delta_{form}\, of \; NH_3 \; (g) = -280 \; kcal/mol$$ $$\Delta_{\text{atom}}$$ of H₂ (g) = 104.2 kcal/mol IE of H (g) = $$311.9 \text{ kcal/mol}$$ $$\Delta_{atom} H(F_2,g) = 37.8 \text{ kcal/mol}$$ $$\Delta_{eg} H (F,g) = -79.6 \text{ kcal/mol}$$ Q.12 The observed dipole moment of $H_2O = 1.85$ D. The H - O bond distance is 0.94 Å and HOH bond angle is 105° . cos $52.5^{\circ} = 0.609$; cos $105^{\circ} = -0.26$ Determine the percentage fractional charges on each oxygen atom in terms of charge of electron in nearest possible integers. Charge of electron = 4.8×10^{-10} e. s. u. Q.13 C = O group moment is 2.3 D and —CH₃ group moment is 0.4 D. Determine the dipole moment of $(CH_3)_2$ CO in $Cm \times 10^{30}$ in nearest possible integer