Class XII

VECTOR ALGEBRA

Assignment No. 10

- Q1. Find the magnitude of each of the following vectors :-
- (i) $\vec{a} = \hat{i} + 2\hat{j} + 5\hat{k}$ (ii) $\vec{b} = 3\hat{i} + 4\hat{j} 3\hat{k}$ (iii) $\vec{c} = \frac{1}{\sqrt{3}}\hat{i} \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$
- Q2. Find the unit vector in the direction of :-
- (i) $\vec{a} = \hat{i} \, 3 + 4 \, \hat{j} 5 \, \hat{k}$ (ii) direction of AB if A (-2, 1, 2) & B (2, -1)
- Q3. Find a vector in the direction of $\vec{a} = \hat{i} 6 2 \hat{j} + 3 \hat{k}$ whose magnitude is 4 units.
- Q4. Find direction ratios and direction cosins of $\vec{a} = 5\hat{i} 3\hat{j} + 4\hat{k}$
- Q5. Find the angel between the vectors $\vec{a} = (3\hat{i} 2\hat{j} + \hat{k})$ & $\vec{b} = \hat{i} 2\hat{j} 3\hat{k}$
- Q6. Find x for which vectors $\vec{a} = 3\hat{i} + \hat{j} 2\hat{k} + \vec{b} = \hat{i} + \lambda\hat{j} 3\hat{k}$ are perpendicular to each other.
- Q7. Find the projection of $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$ on $\vec{b} = \hat{i} 2\hat{j} + \hat{k}$
- Q8. Find a vector with magnitude 3 units & is perpendicular to each of the vector $\vec{a} = 3\hat{i} + \hat{j} 4\hat{k}$ and $\vec{b} = 6\hat{i} + 5\hat{j} 2\hat{k}$
- Q9. Find $(\vec{a}x\vec{b})$ and $\vec{l}\vec{a}x\vec{b}$ I if (i) $\vec{a} = \hat{i} \hat{j} + 2\hat{k}$ & $\vec{b} = 2\hat{i} + 3\hat{j} 4\hat{k}$
 - (ii) $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ & $\vec{b} = 3\hat{i} + 5\hat{j} 2\hat{k}$ (iii) $\vec{a} = 3\hat{i} + 5\hat{j} 2\hat{k}$ & $\vec{b} = 3\hat{i} + \hat{k}$
- Q10. Find the area of parallelogram whose diagonal are (i) $\vec{d} = 3\hat{i} + \hat{j} 2\hat{k} & \vec{d} = \hat{i} 3\hat{j} + 4\hat{k}$
- (ii) $\vec{d} = 2\hat{i} \hat{j} + \hat{k} \& \vec{d} = 3\hat{i} + 4\hat{j} \hat{k}$
- Q11. Using Vector find area of ΔABC if :-
- (i) A (3, -1, 2), B (1, -1, -3) & C (4, -3) (ii) A(1,2,3), B(2, 5, -1), C (-1, 1, 2) Q12. Using vector show A, B, C are collinear pts.
- (ii) A(3, -5, 1), B(-1, -, 8) & C(7, -10, -6) (ii) A(6, -7, -1) B(2, -3, 1) & C(4, -5, 0)
- Q13. Verify $\vec{a}x(\vec{b} + \vec{c}) + (\vec{a}x\overline{b}) + (\vec{a}x\vec{c})if$
 - (i) $\vec{a} = \hat{i} \hat{j} 3\hat{k}$, $\vec{b} = 4\hat{i} 3\hat{j} + \hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 2\hat{k}$
 - (ii) $\vec{a} = 4\hat{i} \hat{j} \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 2\hat{k}$
- Q14. If I \vec{a} I = 5, I \vec{b} I = 13, and $(\vec{a}x\vec{b}) = 25$, find \vec{a} , \vec{b}
- Q15. If I \vec{a} I = 2, I \vec{b} I = 7, and $(\vec{a}x\vec{b}) = 3\hat{i} + 2\hat{j} + 6\hat{k}$, find the angle between \vec{a} and \vec{b} .