Q1. Find the magnitude of each of the following vectors :-
(i) $\vec{a}=\hat{i}+2 \hat{j}+5 \hat{k}$
(ii) $\vec{b}=3 \widehat{i}+4 \widehat{j}-3 \widehat{k}$
(iii)

$$
\vec{c}=\frac{1}{\sqrt{3}} \hat{i}-\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}
$$

Q2. Find the unit vector in the direction of :-
(i) $\vec{a}=\widehat{i} 3+4 \widehat{j}-5 \widehat{k}$
(ii) direction of AB if $\mathrm{A}(-2, T, 2) \& \mathrm{~B}(2,-1)$

Q3. Find a vector in the direction of $\vec{a}=\hat{i} 6-2 \hat{j}+3 \hat{k}$ whose magnitude is 4 units.
Q4. Find direction ratios and direction cosins of $\vec{a}=5 \hat{i}-3 \widehat{j}+4 \widehat{k}$
Q5. Find the angel between the vectors $\vec{a}=(3 \hat{i}-2 \hat{j}+\widehat{k} \quad \& \vec{b}=\widehat{i}-2 \widehat{j}-3 \widehat{k}$
Q6. Find x for which vectors $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}+\vec{b}=\hat{i}+\lambda \hat{j}-3 \hat{k}$ are perpendicular to each other.
Q7. Find the projection of $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ on $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$
Q8. Find a vector with magnitude 3 units \& is perpendicular to each of the vector $\vec{a}=3 \hat{i}+\hat{j}-4 \hat{k}$ and $\vec{b}=6 \hat{i}+5 \hat{j}-2 \hat{k}$
Q9. Find ($\vec{a} x \bar{b}$) and $\mathrm{I} \vec{a} x \bar{b} \mathrm{I}$ if (i) $\vec{a}=\hat{i}-\hat{j}+2 \hat{k} \quad \& \vec{b}=2 \hat{i}+3 \hat{j}-4 \widehat{k}$
(ii) $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k} \& \vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$
(iii) $\vec{a}=3 \hat{i}+5 \hat{j}-2 \hat{k} \& \vec{b}=3 \hat{i}+\hat{k}$

Q10. Find the area of parallelogram whose diagonal are
(i) $\vec{d} 1=3 \widehat{i}+\hat{j}-2 \widehat{k} \& \vec{d} 2=\hat{i}-3 \hat{j}+4 \widehat{k}$
(ii) $\vec{d} 1=2 \hat{i}-\hat{j}+\hat{k} \& \vec{d} 2=3 \hat{i}+4 \hat{j}-\hat{k}$

Q11. Using Vector find area of $\Delta \mathrm{ABC}$ if :-
(i) $\mathrm{A}(3,-1,2), \mathrm{B}(1,-1,-3) \& \mathrm{C}(4,-3)$
(ii) $\mathrm{A}(1,2,3), \mathrm{B}(2,5,-1), \mathrm{C}(-1,1,2)$

Q12. Using vector show $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear pts.
(ii) $\mathrm{A}(3,-5,1), \mathrm{B}(-1,-, 8) \& \mathrm{C}(7,-10,-6) \quad$ (ii) $\mathrm{A}(6,-7,-1) \mathrm{B}(2,-3,1) \& \mathrm{C}(4,-5,0)$

Q13. Verify $\vec{a} x(\vec{b}+\vec{c})+(\vec{a} x \bar{b})+(\vec{a} x \vec{c})$ if
(i) $\vec{a}=\hat{i}-\hat{j}-3 \hat{k}, \bar{b}=4 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+2 \hat{k}$
(ii) $\vec{a}=4 \hat{i}-\hat{j}-\hat{k}, \bar{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+2 \hat{k}$

Q14. If I $\vec{a} \mathrm{I}=5$, $\mathrm{I} \vec{b} \mathrm{I}=13$, and $(\vec{a} x \vec{b})=25$, find \vec{a}, \vec{b}
Q15. If I $\vec{a} \mathrm{I}=2, \mathrm{I} \vec{b} \mathrm{I}=7$, and $(\vec{a} x \vec{b})=3 \hat{i}+2 \hat{j}+6 \hat{k}$, find the angle between \vec{a} and \vec{b}.

