Class 12 ${ }^{\text {th }}$
 Relations \& Functions

Q.1) Let A and B are any two-empty sets. Show that $f: A \times B \rightarrow B \times A$ such that $\mathrm{f}(\mathrm{a}, \mathrm{b})=(\mathrm{b}, \mathrm{a})$ is a bijective function.

Sol.1) (Rough diagram)

One-One function
let (a, b) and $(c, d) \in A \times B$ (domain)
and $f(a, b=f(c, d)$
$\Rightarrow(b, a)=(d, c)$
$\Rightarrow b=d$ and $a=c$
$\Rightarrow(a, b)=(c, d)$
$\therefore f$ is one-one function
On-To
(.) since $n(A \times B)=n(B \times A)$
(.) f is one-one (just proved above)
(.) ${ }^{3}$ Range = co-domain
\therefore f must be on o
$\therefore \mathrm{f}$ is a bijective function ans.
Q.2) Show that $f: N \rightarrow N$ given by
$f(x)=\{x+1$; if x is odd $\}$
$=\{x-1$; if x is even $\}$
f is a bijective function.
Sol.2) (Rough diagram)

One-One function :-
(.) Case 1: let x_{1}, and x_{2} on both odd
$x_{1}, x_{2} \in N$ (domain)
and $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \quad x_{1}+1=x_{2}+1$
$\Rightarrow \quad x_{1}=x_{2}$
(.) Case 2: let x_{1}, and x_{2} both even

$$
x_{1}, x_{2} \in N \text { (domain) }
$$

$$
\begin{aligned}
& \text { and } f\left(x_{1}\right)=f\left(x_{2}\right) \\
\Rightarrow & x_{1}-1=x_{2}-1 \\
\Rightarrow & x_{1}=x_{2}
\end{aligned}
$$

(.) Case 3 : let x_{1} is odd and x_{2} is even

$$
\text { and } f\left(x_{1}\right)=f\left(x_{2}\right)
$$

$\Rightarrow \quad x_{1}+1=x_{2}-1$
$\Rightarrow \quad x_{2}-x_{1}=2 \quad$ \{not possible \because even no - odd no $\neq 2$ \}
\therefore thus case is rejected
(.) Case 4 : let x_{1} is even and x_{2} is odd

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
\Rightarrow & x_{1}-1=x_{2}+1 \\
\Rightarrow & x_{1}-x_{2}=2 \quad(\text { not possible } \because \text { even no }- \text { odd no } \neq 2)
\end{aligned}
$$

\therefore thus case is also rejected
Hence, overall f is one-one function
On-To :
For every odd number $(2 n-1) \in N$ (co-domain) there exists an even number (2n) in domain (N) and for every even number $(2 p) \in N$ (co-domain) there exists an odd number
(2p-1) $\in N$ (domain)
\Rightarrow co-domain $=$ Range
$\therefore f$ is on-to
$\therefore f$ is bijective function
Q.2) Given examples of two functions $f: N \rightarrow Z$ and $g: Z \rightarrow Z$ such that gof is injective but g is not injective.

Sol.2) Given : $f: N \rightarrow Z$
and $g: Z \rightarrow Z$
then domain of 'gof ' is same as domain of ' f ' and co-domain of 'gof ' is as same as co-domain of ' g '
\therefore gof $: N \rightarrow Z$
let $f(x)=x$ and $g(x)=|x|$
$g o f=g(f(x))$
$=g(x)$
$g o f=|x|$
one-one (for gof)
let $x_{1}, x_{2} \in N$ (domain of gof)
and $(g 0 f)(x 1)=(g \circ f)\left(x_{2}\right)$
$\Rightarrow \quad g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$
$\Rightarrow \quad\left|x_{1}\right|=\left|x_{2}\right|$
$\Rightarrow \quad x_{1}= \pm x_{2}$
but $x_{1} \neq x_{2} \quad \ldots .\left\{\ldots x_{1}, x_{2} \in N\right\}$
$\therefore x_{1}=x_{2}$
\therefore gof is one-one function
Now $g(-1)=|-1|=1$
$g(1)=|-1|=1$
since two different elements in domain (z) of g has same image in co-domain (z)
$\therefore \mathrm{g}$ is not one-one

$$
\therefore f(x)=x \text { and } g(x)=|x| \quad \text { ans. }
$$

$$
\text { (i) } f(x)=\left(3-x^{3}\right)^{\frac{1}{3}} \text {. Find fOf }(\mathrm{x})
$$

Sol.3)

$$
\begin{aligned}
& \text { (i) } \begin{aligned}
f 0 f & =f(f(x)) \\
& =f\left[\left(3-x^{3}\right)^{\frac{1}{3}}\right] \\
& =\left[3-\left(\left(3-x^{3}\right)^{\frac{1}{3}}\right)^{3}\right]^{\frac{1}{3}} \\
& =\left[3-\left(3-x^{3}\right)\right]^{\frac{1}{3}} \\
& =\left[3-3+x^{3}\right]^{\frac{1}{3}} \\
& =\left(x^{3}\right)^{\frac{1}{3}} \\
& =x
\end{aligned} \\
& \therefore f 0 f=x \text { ans. } \\
& \begin{array}{l}
\text { (ii) } f(x)=|x| \\
g(x)=|5 x-2| \\
\text { Is fog }=\text { gof for all } x \in R \text { ? } \\
\text { fog }=f(g(x)) \\
\quad=f(|5 x-2|) \\
\quad=||5 x-2|| \\
\quad=|5 x-2| \quad\{\ldots \quad| | x| |=|x|\} \\
\text { gof }=g(f(x)) \\
\quad=g(|x|)
\end{array} \\
& =|5| x|-2| \\
& \text { clearly } f o g \neq g o f \quad \text { ans. } \\
& \text { e.g when } x=-1 \\
& \text { fog }=|5(-1)-2|=|-5-2|=|-7|=7 \\
& \text { gof }=|5|-1|-2|=|5-2|=3
\end{aligned}
$$

(iii) If $f(x)=2 x ; g(y)=3 y+4$ and $h(z)=\sin Z$

Show that ho(gof) $=($ hog $)$ of
LHS = ho (gof)
$=h o[g(f(x))]$
$=h o[g(2 x)]$
$=h o[3(2 x)+4]$
$=h o(6 x+4)$
$=\sin (6 x+4)$
RHS (hog)of

$$
=[h o g] o f
$$

$=[h(g(y))] o f$
$=[(3 y+4)] o f$
$=[\sin (3 y+4)] o f$
$=\sin (3 y+4) 0(2 x)$
$=\sin (3(2 x)+4)=\sin (6 x+4)$
\therefore LHS $=$ RHS
Q.4) Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $f(x)=10 \mathrm{x}+7$. Find function $\mathrm{g}(\mathrm{x})$ such that $\mathrm{fog}=\mathrm{gof}=\mathrm{I}_{\mathrm{R}}$
(where $I_{R}=x$ identity function : $R \rightarrow$ real no's)
Sol.4) We have $f(x)=10 x+7$
given $f o g=g o f=I_{R}$
\Rightarrow fog $=$ gof $=x \quad$ where $x \in R$
To find: $\mathrm{g}(\mathrm{x})$:
Consider fog $=x$

$$
\begin{aligned}
& \Rightarrow \quad f(g(x))=x \\
& \Rightarrow \quad 10 g(x)+7=x \\
& \Rightarrow \quad g(x)=\frac{x-7}{10}
\end{aligned}
$$

Now gof $=g(f(x))$

$$
=g(10 x+7)
$$

$$
=\frac{10 x+7-7}{10}
$$

$$
\left.=\frac{10 x}{10}=x=I_{R} \quad \text { (verified }\right)
$$

$$
\ldots g(x)=\frac{x-7}{10} \quad \text { ans }
$$

Q.5) Let $\mathrm{f}=\mathrm{R} \rightarrow \mathrm{R}$ be the sign um function defined as
$f(x)=\{-1 ; x<0\}$
$\{0 ; x=0\}$
$\{1 ; x>0\}$
and $g(x)=[x]$ be the greatest integer function. Then does fog and gof coincide (equal) in $(0,1)$?
Sol.5) When $x \in(0,1)$
value of $g(x)=[x]$ can be o or $1 \quad\{[0.1]=0\}\{[0.2]=0\}\{[1]=1\}$
value of $f(x)=1 \quad$........ $\{\because$ when $x>0 f(x)=1\}$
Now $f o g=f(g(x))$
$=f([x])$
$=f(0$ or 1$) \quad \ldots \ldots\{$ as $x \in[0,1][x]$ can be 0 or 1$\}$
$=0,1 \quad\{$ when $x=0 ; f(x)=0$, when $x=1 ; f(x)=1\}$
Now gof $=g(f(x))$

$$
\begin{aligned}
&=g(1) \ldots .\{\ldots x \in[0,1], \quad f(x)=1\} \\
&=[1]=1
\end{aligned}
$$

clearly fog does not coincide (equal) with gof when $x \in[0,1]$ ans.
Q.6) Let $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)\}$ and $\mathrm{g}=\{(1,3),(2,3),(5,1)\}$ write down gof.
Sol.6) Domain of gof is same as domain of f and co-domain of gof is same as co-domain of g \therefore gof : $\{1,3,4\} \rightarrow\{1,3\}$
$\begin{array}{rlr}\text { Now , given: } \begin{aligned} f(1) & =2 \\ f(3) & =5 \\ f(4) & =1\end{aligned} & g(2)=3 \\ g(5) & =1\end{array}$
$\operatorname{gof}(1)=g(f(1))=g(2)=3$
$\operatorname{gof}(3)=g(f(3))=g(5)=1$
$\operatorname{gof}(4)=g(f(4))=g(1)=3$
$\therefore \operatorname{gof}=\{(1,3),(3,1),(4,3)\} \quad$ ans.
Q.7) Let $A=\{1,2,3\}$ and $B=\{4,5,6,7\}$ and $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. State whether f is one-one or on-to.

Sol.7) Given $f(1)=4 \quad f(2)=5 \quad f(3)=6$

Clearly f is one-one, as every element in domain (A) has a unique image in co-domain (B) Since $7 \in$ co-domain (B), but this is not the image of any element in domain (A)
$\therefore \mathrm{f}$ is not on-to ans.
Q.8) Consider the function $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $g(x)=\cos x$. Show that f and g are one-one but $\mathrm{f}+\mathrm{g}$ is not one-one.

Sol.8) We know that for any two different elements x_{1} and $x_{2} \in\left[0, \frac{\pi}{2}\right]$

$$
\begin{aligned}
& \quad \sin x_{1} \neq \sin x_{2} \operatorname{and} \cos x_{1} \neq \cos x_{2} \\
& \text { Q } f\left(x_{1}\right) \neq(f) x_{2} \text { and } g\left(x_{1}\right) \neq g\left(x_{2}\right) \\
& \text { for all } x_{1}, x_{2} \text { ? }[0,7] \text { and } x_{1} \neq x_{2} \\
& \therefore \mathrm{f} \text { and } \mathrm{g} \text { are one-one } \\
& \text { Now } f+g=\sin x+\cos x \\
& (f+g)(0)=f(0)+g(0)=\sin (0)+\cos (0)=0+1=1 \\
& (f+g)\left(\frac{\pi}{2}\right)=f\left(\frac{\pi}{2}\right)+g\left(\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2}\right)+\cos \frac{\pi}{2}=1+0=1 \\
& \text { clearly }(f+g)(0)=(f+g)\left(\frac{\pi}{2}\right) \\
& \text { but } 0 \neq \frac{\pi}{2} \\
& \text { i.e two different elements in domain }\left[0, \frac{\pi}{2}\right] \text { has same image in co-domain (R) } \\
& \therefore f+g \text { is not one-one }
\end{aligned}
$$

Q.9) (i) If $A=\{1,2,3\}$ and $B=\{a, c, d, e\}$. Find number of one-one functions

(ii) Find the number of on-to function from A to A if $A=\{1,2,3 \ldots . . n\}$

Sol.9) (i) The element 1 in A can be attached / associated with any element of B in 4 ways element 2 in A can be attached / Associated in 3 ways and element 3 can be associated in 2 ways
\therefore total no. of one-one function $=4 \times 3 \times 2=24$ ans.
(ii) The element 1 in co-domain can be attached / Associated with any element of domain in = n
ways
element 2 can be associated in $=(n-1)$ ways element 3 can be associated in $=(n-2)$ ways element n can be associated $\mathrm{in}=1$ way
\therefore the total no of on-to function an $=n \times(n-1) \times(n-2) \times \ldots .1=n$!ans.
Q.10) a)

Which of the following graphs represent a function ?
Sol.10) (a) is a function
\because for each value of $x, f(x)$ attains a unique and different value.
(b) is not a function
since for same value of $x, f(x)$ has multiple values.

