Class $12^{\text {th }}$
 Relations \& Functions

Q.1) $\quad *: P(x) \times P(x) \rightarrow P(x)$ defined by $A * B=(A-B) \cup(B-A)$ for all $A, B \in P(x)$

Show that φ in the identity element and all the elements of $P(x)$ are invertible with $A^{-1}=A$.
Sol.1) We have,
$A * B=(A-B) \cup(B-A)$
(1) To show φ is the identity elements, we have to show
$A * \varphi=A$ and $\varphi * A=A$
consider, $A * \varphi$
consider, $\varphi * A$

$$
\begin{array}{ll}
=(A-\varphi) \cup(\varphi-A) & =(\varphi-A) \cup(A-\not \subset) \\
=A \cup \varphi & =\varphi \cup A \\
=A & =A
\end{array}
$$

clearly $\not \subset$ is the identity element
(2) $A * B=E$
$\Rightarrow(A-B) \cup(B-A)=\varphi$
this is possible only when $B=A$
since, $(A-A) \cup(A-A)=\varphi \cup \varphi=\varphi=E$
\therefore all element of $P(x)$ are invertible with $A=A$ i.e $B=A$ ans.
Q.2) Consider the binary operation ${ }^{*}: R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined by $a * b=|a-b|$ and $a o b=a$
(.) Show that * is commutative but not Associative
(.) Show that o is associative but not commutative
(.) Show that $a *(b 0 c)=(a * b) 0(a * c)$
(.) Does 0 distributes over * ?

Sol.2) $a * b=|a-b|$ and $a \circ b=a$
(.) consider $a * b=|a-b|$
commutative $a * b=|a-b|$

$$
\begin{aligned}
b * a & =|b-a| \\
& =|a-b| \\
& =a * b
\end{aligned}
$$

$\therefore{ }^{*}$ is commutative on R
Associative $(a * b) * c=|a-b| * c$

$a *(b * c)=a *|b-c|$
$=|a-|b-c||$
$\neq(a * b) * c$
e.g $\quad(1 * 2) * 3=|1-2| * 3$

$$
=1 * 3
$$

$$
=|1-3|=2
$$

$1 *(2 * 3)=1 *|2-3|$

$$
=1 * 1
$$

$$
=|1-1|
$$

$$
=0
$$

clearly * is not Associate on R
(.) Consider a ob $b=a$

Commutative: a o $b=a$

$$
\begin{aligned}
& b \text { o } a=b \\
& a \text { o } b \Rightarrow b \text { o } a
\end{aligned}
$$

```
e.g.
1o \(2=1\)
2 o \(1=2\)
```

clearly o is not commutative on R
Associative :

$$
\begin{aligned}
& (a o b) o c=a \circ c=a \\
& a o(b o c)=a o b=a
\end{aligned}
$$

clearly $(a \circ b) o c=a o(b o c)$
$\therefore o$ is Associative on R
(.)To prove $a *(b \circ c)=(a * b) o(a * c)$

LHS $\quad a *(b o c)$
$=a * b$
$=|a-b|$
RHS $(a * b) o(a * c)$
$=|a-b| o|a-c|$
$=|a-b|$
clearly LHS = RHS
(.) o distributes over when,
$a o(b * c)=(a \circ b) *(a \circ c)$
LHS $a o(b * c)$

$$
\begin{aligned}
& =a \text { o a o }|b-c| \\
& =a
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\text { RHS }(a o b) & (a o c
\end{array}\right) .
$$

clearly $\mathrm{LHS} \neq \mathrm{RHS}$
\therefore o does not distributes over ans.
Q.3) Let * be a binary operation on set z (integers) defined by $a * b=2 a+b-3$. Find
(i) $(3 * 4) * 2$
(ii) $(2 * 3) * 4$

Sol.3) We have a * b $=2 a+b-3$
(i) $(3 * 4) * 2$
$=(6+4-3) * 2$
$=7$ * 2
$=14+2-3$
$=13$ ans.
(ii) $(2 * 3) * 4$
$=(4+3-3) * 4$
$=4$ * 4
$=8+4-3$
$=9$ ans.
Q.4) Let * be a binary operation on set A where $A=\{1,2,3,4\}$
(i) write the total number of binary operations
(ii) If $a * b=$ HCF of $a \& b$ construct the operation table.

Sol.4) $\quad A=\{1,2,3,4\}$
(i) we know that no. of binary operation $=n^{n^{2}}$
here $x=4$
\therefore no. of binary operations $=4^{4^{2}}=4^{16}$ ans.
(ii) $a * b=$ HCF of $a \& b$
operation table :

	b				
a	1	2	3	4	
	1	1	1	1	
	2	1	2	1	2
	3	1	1	3	1
	4	1	2	1	4

Q.5) Show that the number of binary operations on $\{1,2\}$ having 1 as identity element and having 2 as inverse of 2 is exactly one

Sol.5) (.) We know that a binary operation on set S is a function from $S \times S$ to S .
(.) so a binary operation on set $\mathrm{s}:\{1,2\}$ is a function from $\{(1,1),(1,2),(2,1),(2,2)\}$ to $\{1,2\}$
(.) let * be the required binary operation
(.) If 1 is the identity element and 2 is the inverse of 2 , then

1 * $1=1$
$1 * 2=2 \quad a * e=a$ and $e * a=a$
$2 * 1=2 \quad$ here $e=1, a=1 \& 2$
and $2 * 2=1$
$a^{*} b=e$
here $a=2 ; b=2 \& e=1$
(2 is the inverse of 2 given)

Clearly * can be defined in a unique way
\therefore Hence no. of required binary operations is 1 ans.
Q.6) Define a binary operation * on the set $\{0,1,2,3,4,5\}$ as
$a * b\{a+b \quad$ if $a+b<6\}$

$$
\{a+b-6 \text { if } a+b \geq 6\}
$$

show that zero is the identity for thus operation and each element $a \neq 0$ of the set is invertible with 6 $-a$ being the inverse of a.

Sol.6) Identity element :
Consider $\quad a * b=a+b$

$$
\begin{array}{l|l}
a * e=a & e * a=a \\
a+e=a & e+a=a \\
e=0 \in A & e=0 \in A
\end{array}
$$

$\therefore 0$ is the identity element
Consider, $a * b=a+b-6$

$$
\begin{array}{c|l}
a * e=a \\
a+e-6=a & e * a=a \\
e+a-6=a
\end{array}
$$

$$
e=6 \notin A \quad e=6 \notin A
$$

$\therefore 0$ is the identity element
ans.
Inverse
Consider $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}$
$a * b=e$
$a+b=0$
$b=-a \notin A$
Consider,
$a * b=a+b-6$
$a * b=e$
$a+b-6=0$
$b=6-a \in A ;(a \neq 0)$
$\therefore 6-a$ is the inverse of a. ans.
Q.7) Show that zero is the identity element for addition on R (real no's) and 1 is the identity element for multiplication on R but there is no identity element for subtraction on R and division on $R-\{0\}$.
Sol.7) (i) *: $R \times R \rightarrow R$

$$
a^{*} b=a+b
$$

> | $a+e=a$ | $e * a=a$ |
| :--- | :--- |
| $e=0 \in R$ | $e=0 \in R$ |

$\therefore 0$ is the identity element for addition on R
(ii) * $R \times R \rightarrow R$
$\mathrm{a}^{*} \mathrm{~b}=\mathrm{ab}$
$a * e=a \quad e * a=a$
$a e=a \quad$ ea=a
$e=1 \in R \quad e=1 \in R$
$\therefore 1$ is the identity element for multiplication on R
(iii) $*: R \times R \rightarrow R$

$$
a * b=a-b
$$

$$
\begin{array}{l|l}
a * e=a & e * a=a \\
a-e=a & e-a=a \\
-e=0 & e=2 a \\
e=0 \in R & \text { but } e \text { can not be in terms of a or variable }
\end{array}
$$

\therefore identity element does not exist
(iv) $*: R-\{0\} \times R-\{0\} \rightarrow R-\{0\}$
$\mathrm{a} * \mathrm{~b}=\frac{a}{b}$
$a * e=a$
$\frac{a}{e}=a$
$e=1 \in R-\{0\}$

$$
\begin{aligned}
& e * a=a \\
& \frac{e}{a}=a \\
& e=a^{2} \\
& \quad \text { but } e \text { cannot be a variable }
\end{aligned}
$$

\therefore identity element does not exist. ans.

Topic: Functions

Q.8) Let $f: R \rightarrow\left\{\frac{-4}{3}\right\} \rightarrow R$ defined as $f(x)=\frac{4 \mathrm{x}}{3 \mathrm{x}+4}$.

Show that f is invertible and find its inverse.

Sol.8) We have

$$
\begin{equation*}
f: R-\left\{\frac{-4}{3}\right\} \rightarrow R \tag{1}
\end{equation*}
$$

and $f(x)=\frac{4 \mathrm{x}}{3 \mathrm{x}+4}$
ONE-ONE :-
let $x_{1}, x_{2} \in R-\left\{\frac{-4}{3}\right\}$ (domain)
and $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \quad \frac{4 x_{1}}{3 x_{1}+4}=\frac{4 x_{2}}{3 x_{2}+4}$
$\Rightarrow 12 x_{1} x_{2}+16 x_{1}=12 x_{1} x_{2}+16 x_{2}$
$\Rightarrow \quad 16 x_{1}=16 x_{2}$
$\Rightarrow \quad x_{1}=x_{2}$
$\therefore f$ is one-one function
ON-TO :-
let $y=f(x)$
$\Rightarrow y=\frac{4 x}{3 x+4}$
$\Rightarrow 3 x y+4 y=4 x$
$\Rightarrow \quad x(3 y-4)-4 y$
$\Rightarrow \quad x=\frac{-4 y}{3 y-4}$
for eachyR (co-domain), there exists an element x in domain such that

$$
\begin{aligned}
& \quad f(x)=f\left(\frac{-4 y}{3 y-4}\right) \\
& \quad f(x)=\frac{4\left(\frac{-4 y}{3 y-4}\right)}{3\left(\frac{-4 y}{3 y-4}\right)+4} \quad \ldots \ldots \ldots . \text { \{from eq. (1)\} } \\
& =\frac{\frac{-16 y}{3 y-4}}{\frac{-12 y+12 y-16}{3 y-4}} \\
& =\frac{-16 \mathrm{y}}{-16}=y \\
& \therefore f(x)=y \\
& \therefore \text { f is on-to function } \\
& \therefore \text { f is bijective function } \\
& \therefore \text { f is invertible function } \\
& \text { and } f^{-1}=\frac{-4 y}{3 y-4} \\
& \text { and } f^{-1}(x)=\frac{-4 x}{3 x-4} \quad \text { ans. }
\end{aligned}
$$

Q.9) Consider $f: R_{+} \rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$. Show that f is bijective.

Also find the inverse.
Sol.9) We have

$$
f: R_{+} \rightarrow[4, \infty]
$$

and $f(x)=x^{2}+4$
One-One :

$$
\begin{aligned}
& \text { let } x_{1}, x_{2} \in R_{+} \\
& \text {and } f\left(x_{1}\right)=f\left(x_{2}\right) \\
& \Rightarrow x_{1}^{2}+4=x_{2}^{2}+4 \\
& \Rightarrow x_{1}^{2}=x_{2}^{2} \\
& \Rightarrow x_{1}= \pm x_{2} \\
& \text { but } x_{1} \neq x_{2} \quad \ldots . .\left\{., x_{1}, x_{2} \in R_{+}\right\}
\end{aligned}
$$

$\Rightarrow x_{1}=x_{2}$
$\therefore \mathrm{f}$ is one-one function
ON-TO :
let $y=f(x)$
$\Rightarrow y=x^{2}+4$
$\Rightarrow x^{2}=y-4$
$\Rightarrow x=\sqrt{y-4}$
for each $y \in[4, \infty]$, there exists an element x in R_{+}such that
$f(x)=f(\sqrt{y-4})$
$=(\sqrt{y-4})^{2}+4$
$=y-4+4$
$f(x)=y$
$\therefore \mathrm{f}$ is on-to function
$\therefore \mathrm{f}$ is bijective
$\therefore \mathrm{f}$ is invertible
and $f^{-1}=\sqrt{y-4}$
and $f^{-1}(x)=\sqrt{x-4}$ ans.
Q.10) Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{S}$, where S is the range of $f . f(x)=4 \mathrm{x}^{2}+12 \mathrm{x}+15$. Show f is invertible and find its inverse.

Sol.10) We have,
$\mathrm{f}: \mathrm{N} \rightarrow \mathrm{S}$
$f(x)=4 x^{2}+12 x+15$
One-One :-
let $x_{1}, x_{2} \in N$ (domain)
and $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\Rightarrow 4 x_{1}^{2}+12 x_{1}+15=4 x_{2}^{2}+12 x_{2}+15$
$\Rightarrow 4 x_{1}^{2}-4 x_{2}^{2}+12 x_{1}-12 x^{2}=0$
$\Rightarrow 4\left(x_{1}^{2}-x_{2}^{2}\right)+12\left(x_{1}-x_{2}\right)=0$
$\Rightarrow 4\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)+12\left(x_{1}-x_{2}\right)=0$
$\Rightarrow\left(x_{1}-x_{2}\right)\left[4 x_{1}+4 x_{2}+12\right]=0$
$\Rightarrow x_{1}-x_{2}=0$ and $4 x_{1}+4 x_{2}+12=0$
$\Rightarrow x_{1}=x_{2}$ but $4 x_{1}+4 x_{2}+12 \neq 0 \quad \ldots . . .\left\{. . x_{1}, x_{2} \in N\right\}$
$\therefore \mathrm{f}$ is one-one function
On-To

$$
\text { let } y=f(x)
$$

$\Rightarrow y=4 \mathrm{x}^{2}+12 \mathrm{x}+15$
$\Rightarrow 4 x^{2}+12 \mathrm{x}+(15-y)=0$ \{quadratic equation\}
here $a=4, b=12$ and $c=15-y$
by quadratic formula,

$$
\begin{aligned}
& x=\frac{-12 \pm \sqrt{144-4(4)(15-y)}}{8} \\
& x=\frac{-12 \pm \sqrt{144-240+16 y}}{8} \\
& x=\frac{-12 \pm \sqrt{16 y-96}}{8} \\
& x=\frac{-12 \pm 4 \sqrt{y-6}}{8} \\
& x=\frac{-12 \pm \sqrt{144-4(4)(15-y)}}{8}_{x=\frac{-3 \pm \sqrt{y-6}}{2}^{8}}
\end{aligned}
$$

$$
x=\frac{-3+\sqrt{y-6}}{2} \text { but } x \neq \frac{-3-\sqrt{y-6}}{2} \quad \ldots . .\{\because \mathrm{x} \in \mathrm{~N}\}
$$

for each $y \in S$ (co-domain), there exists
on element x in N (domain) such that

$$
\begin{aligned}
& f(x)=f\left(\frac{-3+\sqrt{y-6}}{2}\right) \\
= & 4\left[\frac{-3+\sqrt{y-6}}{2}\right]^{2}+12\left[\frac{-3+\sqrt{y-6}}{2}\right]+15 \\
= & 4\left(\frac{9+y-6-6 \sqrt{y-6}}{4}\right)+6(-3+\sqrt{y-6})+15 \\
= & 3+y-6 \sqrt{y-6}-18+6 \sqrt{6-y}+15
\end{aligned}
$$

$$
f(x)=y
$$

$\therefore f$ is on-to function
$\therefore f$ is bijective
$\therefore f$ is invertible
and $f^{-1}=\frac{-3+\sqrt{y-6}}{2}$
and $f^{-1}(x)=\frac{-3 \sqrt{x-6}}{2}$
ans.

