Class 12th Relations & Functions

* : $P(x) \times P(x) \rightarrow P(x)$ defined by $A * B = (A - B) \cup (B - A)$ for all $A, B \in P(x)$

Q.1)

Show that φ in the identity element and all the elements of P(x) are invertible with $A^{-1} = A$. Sol.1) We have. $A * B = (A - B) \cup (B - A)$ (1) To show $\, arphi$ is the identity elements , we have to show $A * \varphi = A$ and $\varphi * A = A$ consider, $A * \varphi$ consider, $\varphi * A$ $= (A - \varphi) \cup (\varphi - A)$ $= (\varphi - A) \cup (A - \not\subset)$ $= \varphi \cup A$ $= A \cup \varphi$ = A= Aclearly $\not\subset$ is the identity element (2) A * B = E $\Rightarrow (A - B) \cup (B - A) = \varphi$ this is possible only when B = Asince, $(A - A) \cup (A - A) = \varphi \cup \varphi = \varphi = E$ \therefore all element of P(x) are invertible with A = A i.e B = Aans. Consider the binary operation $*: R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined by a * b = |a - b| and Q.2) aob = a(.) Show that * is commutative but not Associative (.) Show that *o* is associative but not commutative (.) Show that $a * (b \ 0 \ c) = (a * b) \ 0 \ (a * c)$ (.) Does 0 distributes over * ? a * b = |a - b| and $a \circ b = a$ Sol.2) (.) consider a * b = |a - b|commutative a * b = |a - b|b * a = |b - a|= |a - b|= a * b... * is commutative on R Associative (a * b) * c = |a - b| * c= ||a - b| - c|a * (b * c) = a * |b - c|= |a - |b - c|| \neq (a * b) * c (1 * 2) * 3 = |1 - 2| * 3e. g = 1 * 3= |1 - 3| = 21 * (2 * 3) = 1 * |2 - 3|= 1 * 1= |1 - 1|= 0 clearly * is not Associate on R (.) Consider $a \circ b = a$ Commutative: $a \circ b = a$ b o a = b $a \circ b \Rightarrow b \circ a$

1 o 2 = 1e.g. 2 o 1 = 2clearly o is not commutative on R Associative : $(a \circ b) \circ c = a \circ c = a$ $a \circ (b \circ c) = a \circ b = a$ clearly $(a \circ b) \circ c = a \circ (b \circ c)$ \therefore *o* is Associative on *R* (.)To prove $a * (b \circ c) = (a * b) \circ (a * c)$ LHS $a * (b \circ c)$ = a * b= |a - b|RHS (a * b) o (a * c)= |a - b|o|a - c|= |a - b|clearly LHS = RHS (.) o distributes over when, $a \circ (b * c) = (a \circ b) * (a \circ c)$ LHS a o (b * c)= a o a o |b - c|= aRHS $(a \circ b) (a \circ c)$ = a a= |a - a|= 0 clearly LHS ≠ RHS ... o does not distributes over ans. Let * be a binary operation on set z (integers) defined by a * b = 2a + b - 3. Find Q.3) (i) (3 * 4) * 2 (ii) (2 * 3) * 4 Sol.3) We have a * b = 2a + b - 3(i) (3 * 4) * 2 = (6 + 4 - 3) * 2= 7 * 2 = 14 + 2 - 3 = 13 ans. (ii) (2 * 3) * 4 = (4 + 3 - 3) * 4= 4 * 4 = 8 + 4 - 3 = 9 ans. Let * be a binary operation on set A where $A = \{1, 2, 3, 4\}$ Q.4) (i) write the total number of binary operations (ii) If a * b = HCF of a & b construct the operation table. Sol.4) $A = \{1, 2, 3, 4\}$ (i) we know that no. of binary operation = n^{n^2} here x = 4 \therefore no. of binary operations = $4^{4^2} = 4^{16}$ ans.

(ii) a * b = HCF of a & b operation table :

	b				
	*	1	2	3	4
	1	1	1	1	1
а	2	1	2	1	2
	3	1	1	3	1
	4	1	2	1	4

- Q.5) Show that the number of binary operations on {1, 2} having 1 as identity element and having 2 as inverse of 2 is exactly one
- Sol.5) (.) We know that a binary operation on set S is a function from S × S to S.
 (.) so a binary operation on set s : {1, 2} is a function from {(1,1), (1,2), (2,1), (2, 2)} to {1,2}
 (.) let * be the required binary operation
 (.) If 1 is the identity element and 2 is the inverse of 2, then
 1 * 1 = 1

$$a * e = a and e * a = a$$

 $2 * 1 = 2$
 $a * e = a and e * a = a$
here $e = 1, a = 1 \& 2$

and 2 * 2 = 1

a * b = e here a = 2 ; b = 2 & e = 1 (2 is the inverse of 2 given)

Clearly * can be defined in a unique way

 \therefore Hence no. of required binary operations is 1 ans.

Q.6) Define a binary operation * on the set {0,1,2,3,4,5} as

 $a * b \{a + b \text{ if } a + b < 6\}$ $\{a + b - 6 \text{ if } a + b \ge 6\}$

show that zero is the identity for thus operation and each element $a \neq 0$ of the set is invertible with 6 – a being the inverse of a.

Sol.6) Identity element :

Consider a * b = a + b a * e = a a + e = a $e = 0 \in A$ \therefore 0 is the identity element Consider, a * b = a + b - 6 a * e = a a + e - 6 = a e + a = ae + a = a $e = 6 \notin A$ $e = 6 \notin A$ \therefore 0 is the identity element ans. Inverse Consider a * b = a + b a * b = e a + b = 0 $b = -a \notin A$ Consider, a * b = a + b - 6 a * b = e a + b - 6 = 0 $b = 6 - a \notin A$; $(a \neq 0)$ $\therefore 6 - a$ is the inverse of a. ans.

- Q.7) Show that zero is the identity element for addition on R (real no's) and 1 is the identity element for multiplication on R but there is no identity element for subtraction on R and division on $R \{0\}$.
- Sol.7) (i) $* : R \times R \to R$

 $\begin{vmatrix} a * b = a + b \\ a + e = a \\ e = 0 \in R \end{vmatrix}$ *e* * *a* = *a e* = 0 ∈ *R* ∴ 0 is the identity element for addition on R

(ii) *: $R \times R \rightarrow R$ a * b = ab a * e = a $e = 1 \in R$ \therefore 1 is the identity element for multiplication on R

(iii) *:
$$R \times R \rightarrow R$$

 $a * b = a - b$
 $a * e = a$
 $a - e = a$
 $-e = 0$
 $e = 0 \in R$
 \therefore identity element does not exist
 $R \times R \rightarrow R$
 $e * a = a$
 $e - a = a$
 $but e \text{ can not be in terms of a or variable}$

(iv) *:
$$R - \{0\} \times R - \{0\} \rightarrow R - \{0\}$$

 $a * b = \frac{a}{b}$
 $a * e = a$
 $\frac{a}{e} = a$
 $e = 1 \in R - \{0\}$
 $e * a = a$
 $\frac{e}{a} = a$
 $e = a^2$
but *e* cannot be a variable
 \therefore identity element does not exist. ans.

Topic : Functions

Q.8) Let
$$f: R \to \left\{\frac{-4}{3}\right\} \to R$$
 defined as $f(x) = \frac{4x}{3x+4}$.
Show that f is invertible and find its inverse.

8) We have $f: R - \left\{\frac{-4}{3}\right\} \rightarrow R$ and $f(x) = \frac{4x}{3x+4}$ (1) ONE-ONE:let $x_1, x_2 \in R - \left\{\frac{-4}{3}\right\}$ (domain) and $f(x_1) = f(x_2)$ $\Rightarrow \frac{4x_1}{3x_1+4} = \frac{4x_2}{3x_2+4}$ $\Rightarrow 12x_1x_2 + 16x_1 = 12x_1x_2 + 16x_2$ $\Rightarrow 16x_1 = 16x_2$ $\Rightarrow x_1 = x_2$ $\therefore f$ is one-one function ON-TO:let y = f(x) $\Rightarrow y = \frac{4x}{3x+4}$ $\Rightarrow 3xy + 4y = 4x$ $\Rightarrow x(3y - 4) - 4y$ $\Rightarrow x = \frac{-4y}{3y-4}$ for eachyR (co-domain), there exists an element x in domain such that

$$f(x) = f\left(\frac{-4y}{3y-4}\right)$$

$$f(x) = \frac{4\left(\frac{-4y}{3y-4}\right)}{3\left(\frac{-4y}{3y-4}\right)+4} \qquad \text{......} \{\text{from eq. (1)}\}$$

$$= \frac{\frac{-16y}{3y-4}}{\frac{-12y+12y-16}{3y-4}}$$

$$= \frac{-16y}{-16} = y$$

$$\therefore f(x) = y$$

$$\therefore f \text{ is on-to function}$$

$$\therefore \text{ f is invertible function}$$

$$\therefore \text{ f is invertible function}$$
and $f^{-1} = \frac{-4y}{3y-4}$
and $f^{-1}(x) = \frac{-4x}{3x-4}$ ans.

Q.9) Consider $f: R_+ \to [4, \infty]$ given by $f(x) = x^2 + 4$. Show that f is bijective. Also find the inverse.

Sol.9) We have $f: R_+$

 $f: R_+ \to [4, \infty]$ and $f(x) = x^2 + 4$

One-One :

let
$$x_1, x_2 \in R_+$$

and $f(x_1) = f(x_2)$
 $\Rightarrow x_1^2 + 4 = x_2^2 + 4$
 $\Rightarrow x_1^2 = x_2^2$
 $\Rightarrow x_1 = \pm x_2$
but $x_1 \neq x_2$ { \dots $x_1, x_2 \in R_+$ }

Sol.8)

 $\Rightarrow x_1 = x_2$... f is one-one function ON-TO: let y = f(x) $\Rightarrow y = x^2 + 4$ $\Rightarrow x^2 = y - 4$ $\Rightarrow x = \sqrt{y - 4}$ for each $y \in [4, \infty]$, there exists an element x in R₊ such that $f(x) = f(\sqrt{y-4})$ $=(\sqrt{y-4})^2 + 4$ =y - 4 + 4f(x) = y... f is on-to function . f is bijective ... f is invertible and $f^{-1} = \sqrt{y - 4}$ and $f^{-1}(x) = \sqrt{x-4}$ ans.

Q.10) Let $f: N \rightarrow S$, where S is the range of f. $f(x) = 4x^2 + 12x + 15$. Show f is invertible and find its inverse.

Sol.10) We have,

```
f: N \rightarrow S
f(x) = 4x^2 + 12x + 15
One-One :-
let x_1, x_2 \in N (domain)
and f(x_1) = f(x_2)
\Rightarrow 4x_1^2 + 12x_1 + 15 = 4x_2^2 + 12x_2 + 15
\Rightarrow 4x_1^2 - 4x_2^2 + 12x_1 - 12x^2 = 0
\Rightarrow 4(x_1^2 - x_2^2) + 12(x_1 - x_2) = 0
\Rightarrow 4(x_1 + x_2)(x_1 - x_2) + 12(x_1 - x_2) = 0
\Rightarrow (x_1 - x_2)[4x_1 + 4x_2 + 12] = 0
\Rightarrow x_1 - x_2 = 0 and 4x_1 + 4x_2 + 12 = 0
\Rightarrow x_1 = x_2 \text{ but } 4x_1 + 4x_2 + 12 \neq 0 \quad \dots \{ ., x_1, x_2 \in N \}
 ... f is one-one function
On-To
    let y = f(x)
\Rightarrow y = 4x^2 + 12x + 15
\Rightarrow 4x^2 + 12x + (15 - y) = 0 {quadratic equation}
here a = 4, b = 12 and c = 15 - y
by quadratic formula,
     x = \frac{-12 \pm \sqrt{144 - 4(4)(15 - y)}}{144 - 4(4)(15 - y)}
     x = \frac{-12 \pm \sqrt{144 - 240 + 16y}}{-12 \pm \sqrt{144 - 240 + 16y}}
  x = \frac{\frac{8}{-12\pm\sqrt{16y-96}}}{\frac{8}{8}}x = \frac{\frac{-12\pm4\sqrt{y-6}}{8}}{\frac{12\pm\sqrt{144-4(4)(15-y)}}{8}}x = \frac{-3\pm\sqrt{y-6}}{2}
```

$$x = \frac{-3 + \sqrt{y - 6}}{2} \quad \text{but } x \neq \frac{-3 - \sqrt{y - 6}}{2} \quad \dots \{ : x \in \mathbb{N} \}$$

for each $y \in S$ (co-domain), there exists on element x in N (domain) such that

$$f(x) = f\left(\frac{-3+\sqrt{y-6}}{2}\right)$$

$$= 4\left[\frac{-3+\sqrt{y-6}}{2}\right]^2 + 12\left[\frac{-3+\sqrt{y-6}}{2}\right] + 15$$

$$= 4\left(\frac{9+y-6-6\sqrt{y-6}}{4}\right) + 6\left(-3+\sqrt{y-6}\right) + 15$$

$$= 3+y-6\sqrt{y-6} - 18+6\sqrt{6-y} + 15$$

$$f(x) = y$$

$$\therefore f \text{ is on-to function}$$

$$\therefore f \text{ is bijective}$$

$$\therefore f \text{ is invertible}$$
and $f^{-1} = \frac{-3+\sqrt{y-6}}{2}$
and $f^{-1}(x) = \frac{-3\sqrt{x-6}}{2}$ ans.