Class 12 ${ }^{\text {th }}$
 Relations \& Functions

Q.1) Show that the number of equivalence relation in the set $\{1,2,3\}$ containing $(1,2)$ and $(2,1)$ is two.

Sol.1) $A=\{1,2,3\}$
The maximum possible relation (i.e. universal relation) is
$R=\{(1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)\}$
The smallest equivalence relation $\mathrm{R}_{.1}$ containing $(1,2)$ and $(2,1)$ is
$R_{.1}=\{(1,1),(2,2),(3,3),(1,2),(2,1)\}$
we are left with four pairs (from universal relation) i.e. $(2,3),(3,2),(1,3)$ and $(3,1)$
If we add $(2,3)$ to R_{1}, then for symmetric by we must add $(3,2)$ and now for transitivity we are forced to add $(1,3)$ and $(3,1)$
Thus the only relation bigger than R_{1} is universal relation i.e R
\therefore The no. of equivalence relations containing $(1,2)$ and $(2,1)$ is two. ans.
Q.2) If $R=\left\{(x, y): x^{2}+y^{2} \leq 4 ; x, y \in z\right\}$ is a relation on z. Write the domain of R .

Sol.2) $\quad R=\{(0,1),(0,-1),(0,2),(0,-2),(1,1),(1,-1),(-1,0),(-1,1),(-1,-1),(2,0),(-2,0)\}$
\therefore Domain of $R=\{0,1,-1,2,-2\} \quad$ ans.
(i.e the first domain of each ordered pairs)
Q.3) Let $\mathrm{R}=\left\{(x, y):\left|x^{2}-y^{2}\right|<1\right\}$ be a relation on set $A=\{1,2,3,4,5\}$. Write R as a set of ordered pairs.

Sol.3) $A=\{1,2,3,4,5\}$
for $\left|x^{2}-y^{2}\right|<1: x$ should be equal to y
$\therefore R=\{(1,1),(2,2),(3,3),(4,4),(5,5)\} \quad$ ans.
Q.4) $\quad \mathrm{R}$ is a relation in Z defined as $(a, b) \in R \Leftrightarrow a^{2}+b^{2}=25$. Find the range.

Sol.4) We have, $a^{2}+b^{2}=25$ and $a, b \in z$
$\therefore R=\{(0,5),(0,-5),(3,4),(3,-4),(-3,4),(-3,-4),(4,3),(4,-3),(-4,3),(-4,-3),(5,0),(-5,0)\}$
\therefore Range $=\{-5,5,4,-4,4,3,-3,0\}$
(i.e. second elements of each order pairs) ans.

Topic: Binary Operations

Q.5) $\quad{ }^{*}: R \times R \rightarrow R$
(1) $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}$
(2) $a * b=a-b$
(3) $a * b=a b$

Find identity element and inverse in both cases.
Sol.5) (1) $a * b=a+b$
Identity element

$a * e=a$	$e * a=a$
$\Rightarrow a+e=a$	$e+a=a$
$\Rightarrow e=0 \in R$	$e=0 \in R$

$\therefore 0$ is the identity element
Inverse
$a * b=e$
$\Rightarrow a+b=0$
$\Rightarrow b=-a \in R \quad\{a \in R \ldots-a$ also $\in R\}$
$\therefore-\mathrm{a}$ is the inverse of a i.e $\mathrm{a}^{-1}=-\mathrm{a}$
(2) $a * b=a-b$

Identity element

$a * e=a$	$e * a=a$
$a-e=a$	$e-a=a$
$-e=0$	$e=2 a$ $e=0 \in R$
but 'e' cannot be a variable as when a changes e also change but should be same \quadfor all $a \in R$	

\therefore Identity element does not exist
hence inverse does not exist
(3) $a * b=a b$

Identity element
$a * e=a$
$e * a=a$
$a e=a$
e $a=a$
$e=1 \in R$
$e=1 \in R$
$\therefore 1$ is the identity element
Inverse
$a * b=e$
$a b=1$
$\mathrm{b}=\frac{1}{a} \in R ; a \neq 0$
\therefore all elements of R are invertible except ' 0 ' and $a^{-1}=\frac{1}{a} ; a \neq 0 \quad$ ans.
Q.6) Let * be a binary operation on R (real no's)

* : $R \times R \rightarrow R$
$a * b=a+b+a b$
(.) Check whether * is binary operation or not
(.) Check the commutativity and Associativity
(.) Find identity element and inverse.

Sol.6) We have,
$a * b=a+b+a b$
since * carries each pair (a, b) in $R \times R$ to a unique element $a+b+a b$ in R
\therefore * is a binary operation on R
Alternate : since $(a, b) \in R \times R$ and addition and multiplication of real no.s is also a real no.
$a+b+a b \in R$
\therefore * is a binary operation on R
Commutative :
let $a, b \in R$
$a * b=a+b+a b$
$b * a=b+a+b a$
$=a+b+a b \quad \ldots .\{\because$ addition and multiplication are itself commutative $\}$
$=a * b$
$\therefore b * a=a * b$ for all $a, b \in R$
\therefore is commutative on R
Associative:

StudiesToday

let $a, b, c \in R$
$(a * b) * c=(a+b+a b) * c$
$=a+b+a b+c(a+b+a b) c$
$=a+b+a b+c+a c+b c+a b c$
$=a+b+c+a b+b c+a c+a b c$
Now $a *(b * c)=a *(b+c+b c)$

$$
=a+b+c+b c+a(b+c+b c)
$$

$$
=a+b+c+b c+a b+a c+a b c
$$

$$
=a+b+c+a b+b c+a c+a b c
$$

clearly $(a * b) * c=a *(b * c)$ for all $a, b, c \in R$
$\therefore{ }^{*}$ is Associative on R.
Identity element:
let e be the identity element in R
$a * e=a$ and $e * a=a$ for all $a \in R$

$\Rightarrow a+e+a e=a$	$e+a+e a=a$

$\Rightarrow e(1+a)=0$	$e(1+a)=0$

$\Rightarrow e=0 \in R$
$e=0 \in R$
$\therefore 0$ is the identity element
Inverse:
$a * b=e$
$a+b+a b=0$
$b(1+a)=-a$
$\mathrm{b}=\frac{-a}{1+a} \in R \quad\{$ except $\mathrm{a}=-1\}$
$\therefore-1$ is not the invertible element
(.) all elements of R are invertible except -1
(.) and $a^{-1}=\frac{-a}{1+a} ; a \neq-1$
(.) e.g. inverse of $2=\frac{-2}{1+2}=\frac{-2}{3} \quad$ ans.
Q.7) Let * be a binary operation on Z (integers) $a * b=a+a b$

Check the commutative, Associativity , identify element and inverse (if it exists).
Sol.7) We have
$a * b=a+a b$ where $a, b \in z$
Commutative :
let $a, b \in z$, then
$a * b=a+a b$
$b * a=b+b a$
$=b+a b$
$b * a \neq a * b$
e.g. $(1 * 2)=1+(1)(2)=1+2=3$
$(2 * 1)=2+2(1)=2+2=4$
clearly $1 * 2 \neq 2 * 1$
\therefore * is not commutative on Z
Associative :
let $a, b, c \in Z$ then
$(a * b) * c=(a+a b) * c$

$$
\begin{aligned}
=a+a b & +(a+a b) c \\
=a+a b & +a c+a b c \\
a *(b * c) & =a *(b+b c) \\
& =a+a(b+b c) \\
& =a+a b+a b c \\
& \neq(a * b) * c
\end{aligned}
$$

e.g. $(1 * 2) * 3=(1+2) * 3$

$$
=3 * 3
$$

$$
=3+3(3)=12
$$

$1 *(2 * 3)=1 *(2+6)=1 * 8$

$$
=1+1(8)=9
$$

Clearly * is not Associative on Z
Identity element:
let e be the identity element Z z , then

$a * e=a$	$e * a=a$
$a+a e=a$	$e+e a=a$
$a e=0$	$e(1+a)=a$
$e=0 \in Z$	$e=\frac{a}{1+a}$

as a changese also changes, bute must be constant for all value of a
\therefore identity element does not exist and hence inverse not possible not possible. ans.
Q.8) Let * be a binary operation on N given by a * $b=L C M$ of $a \& b$
(1) Find $5 * 7,20 * 16$
(2) Is * commutative?
(3) If * Associative ?
(4) Find the identity element in N.
(5) which elements of N are invertible ?

Sol.8) We have
$a * b=$ LCM of $a \& b ; a, b \in N$
(1) $5 * 7=$ LCM of 5 and $7=35$
$20 * 16=$ LCM of 20 and $16=80$
(2) Commutative :
let $a, b \in N$
$a * b=L C M$ of a and b
$b^{*} a=L C M$ of b and a
$=$ LCM of a and b
$=a * b$
$\therefore \mathrm{b}^{*} \mathrm{a}=\mathrm{a} * \mathrm{~b}$ for all $a, b \in N$
\therefore * is commutative on N
(3) Associative :
let $a, b, c \in N$
$(a * b) * c=(L C M$ of a and $b) * c$
$=L C M$ of $[(L C M$ of a and $b)$ and $c]$
$=L C M$ of a, b and c
$a *(b * c)=a *(L C M$ of b and $c)$
$=$ LCM of $[a$ and $(L C M$ of b and $c)]$
$=$ LCM of a, b and c
clearly $(a * b) * c=a *(b * c)$ for all $a, b, c \in N$
\therefore * is Associative on N
(4) Identity element

lete be an identity element $\in N$

$a * e=a$
\Rightarrow LCM of a and $e=a \quad e * a=a$
\Rightarrow LCM of $a \& 1=a \quad$ LCM of e and $a=a$
$\Rightarrow e=1 \in N \quad$ LCM of 1 and $a=a$
$\Rightarrow e=1 \in N$
$\therefore 1$ is the identity element for all $a \in N$
Inverse
$a * b=e$
\Rightarrow LCM of a and $b=1$
this is possible only when $a=1 \& b \neq 1$
$\therefore 1$ is the only invertible element and 1 is its inverse
ans.
Q.9) Let R be a of real no.s and $A=R \times R$ is a binary operation on A given by $(a, b) *(c, d)=(a c, b d)$ for all $(a, b)(c, d) \in A$
(1) Show that * is Commutative
(2) Show that * is Associative
(3) Find the identity element
(4) Find invertible elements and their inverse.

Sol.9) We have,

$$
(a, b) *(c, d)=(a c, b d)
$$

Commutative :

$$
\begin{aligned}
& \text { let }(a, b) \&(c, d) \in A, \text { then } \\
& \begin{array}{r}
(a, b) *(c, d) \\
(c, d) *(a, b)
\end{array}=(c a, b d) \\
& =(a c, b d) \\
& =(a, b) *(c, d)
\end{aligned}
$$

\therefore * is commutative on A

Associative :

let $(a, b),(c, d) \&(e, f) \in A$
$[(a, b)(c, d)] *(e, f)$
$=(a c, b d)(e, f)$
$=(a c e, b d f)$
$(a, b) *[(c, d) *(e, f)]$
$=(a, b) *(c e, d f)$
$=(a c e, b d f)$
clearly $((a, b) *(c, d)) *(e, f)=(a, b) *((c, a) *(e, f))$
$\therefore *$ is Associative on A
Identity element
let (x, y) be the identity element

$$
\begin{array}{l|l}
(a, b) *(x, y)=(a, b) & (x, y) *(a, b)=(a, b) \\
\Rightarrow(a x, b y)=(a, b) & \Rightarrow(x a, y b)=(a, b) \\
\Rightarrow a x=a \& b y=b & \Rightarrow x a=a \& y b=b \\
\Rightarrow x=1 \text { and } y=1 & \Rightarrow x=1 \& y=1
\end{array}
$$

$\therefore(1,1)$ is the identity element
Inverse
$(a, b) *(c, d)=(x, y)$
$\Rightarrow(a c, b d)=(1,1)$
$\Rightarrow a c=1$ and $b d=1$
$\Rightarrow c=\frac{1}{a}$ and $d=\frac{1}{b}$
$\therefore(c, d)=\left(\frac{1}{a}, \frac{1}{b}\right) \in R$ except $(0, b)=(0,0)$
(.) all elements of A are invertible except $(0,0)$
(.) inverse of $(0, b)$ is $\left(\frac{1}{a}, \frac{1}{b}\right) ;(a, b) \neq(0,0) \quad$ ans.
Q.10) X is a non-empty set and * is a binary operation *: $p(x) * P(x) \rightarrow P(x)$ given by $A \times B=A \cap B$
(.) Show * is Commutative
(.) Show * is Associative
(.) Find the Identity element
(.) Find the Invertible elements in $P(x)$ and their inverse.

Sol.10) We have, $A \times B=A \cap B$
Commutative :
let $A, B \in P(x)$
$A * B=A \cap B$
$B * A=B \cap A$
$=A \cap B \quad \ldots . . .\{\because \cap$ is its of commutative $\}$
clearly $A * B=B * A$ for all $A, B \in P(x)$
\therefore * is commutative on $\mathrm{P}(\mathrm{x})$
Associative :
let $A, B, C \in P(x)$
$(A * B) * C=(A \cap B) * C$
$=(A \cap B) \cap C$
$A *(B * C)=A *(B \cap C)$
$=A \cap(B \cap C) \quad\{\cap$ is itself Associative $\}$
clearly $(A * B) * C=A *(B * C)$ for all $A, B, C \in P(x)$
\therefore * is Associative on $P(x)$
Identity element
let E is an identity element then

$$
A * E=A \quad E * A=A
$$

$\Rightarrow A \cap E=A \quad \Rightarrow E \cap A=A$
$\Rightarrow E=X \in(P x) \quad \Rightarrow E=X \in P(x)$
\{reason: X is the largest subset in $\mathrm{P}(\mathrm{x})$ \}
$\therefore X$ is the identity element
Inverse:
$A * B=E$
$\Rightarrow A \cap B=X$
this is possible only when $A=B=X$
since $X \cap X=A$
$\therefore X$ is only the invertible element in $P(x)$ and X is its inverse
ans.

