Class 12th Relations & Functions

Q.1)	Show that the relation R in set Z given by $R\{(a, b): 2 \text{ divides } a - b\}$ is an Equivalence relation.
Sol.1)	We have, $R = \{(a, b) : 2 \text{ divide } a - b\}$ Symmetric : let $(a, b) \in R$ $\Rightarrow a - b \text{ is divisible by 2}$ $\Rightarrow a - b = 2\lambda$ $\{\lambda \in Z\}$ $\Rightarrow b - a = -2\lambda$ which is also divisible by 2 $\Rightarrow (b, a) \in$ \therefore R is Symmetric Reflexive : for each $a \in Z$ $\Rightarrow a - a = 0$ which is divisible by 2 $\Rightarrow (a, a) \in R$ \therefore R is Reflexive Transitive : let $(a, b) \in R$ and $(b, c) \in R$ $\Rightarrow a - b = 2\lambda$ and $b - c = 2k$ $\{\lambda, k \in Z\}$ Now, $a - c = (a - b) + (b - c)$ $\Rightarrow a - c = 2(\lambda + k)$ which is also divisible by 2 $\Rightarrow (a, c) \in R$ \therefore R is transitive since R is Symmetric, Reflexive and transitive \therefore R is an Equivalence relation ans.
Q.2)	Show that the relation R in the set A, $A = \{x \in z : 0 \le x \le 12\}$ given by $R = \{(a, b) : (a - b) $ is multiple of 4} is an equivalence relation. Find the set of all the elements in set A which are related to 1.
Sol.2)	We have , $R = \{(a, b) : a - b \text{ is multiple of } 4\}$ Symmetric : $ \text{let}(a, b) \in R$ $\Rightarrow a - b \text{ is multiple of } 4$ $\Rightarrow a - b = 4\lambda$ $(\lambda \epsilon z)$ $\Rightarrow b - a = 4\lambda$ which is multiple by 4 $\Rightarrow (b, a) \in R$ \therefore R is Symmetric Reflexive : for each $a \in A$ we have, $ a - a = 0$ which is multiple of 4 $\Rightarrow (a, a) \in R$ \therefore R is Reflexive Transitive :

	let $(a, b) \in R$ and $(b, c) \in R$ $\Rightarrow a - b = 4\lambda$ and $ b - c = 4k$ $\{\lambda, k \in Z\}$ $\Rightarrow (a - b) = \pm 4\lambda$ and $(b - c) = -4k$ Now, $(a - c) = (a - b) + (b - c)$ $\Rightarrow (a - c) = \pm 4\lambda \pm 4k$ $\Rightarrow (a - c) = \pm 4(\lambda \pm k)$ $\Rightarrow a - c = \lambda \pm k $ which is multiple of 4 $\Rightarrow (a, c) \in R$ \therefore R is transitive \therefore R is an Equivalence relation The elements which related to 1 are 1, 5, 9
Q.3)	\therefore required set is {1, 5, 9} ans. Let R be a relation on the set "A" of ordered pairs defined by $(x, y) R(u, v)$ if and only if $xv = yu$. Show that R is an equivalence relation.
Sol.3)	Given : A \rightarrow set of ordered pairs (x, y) $R(u, v) \Rightarrow xv = yu$ Symmetric : let $(x, y) R(u, v)$ $\Rightarrow xv = yu$ (Rough work) $\Rightarrow vx = uy$ ($(u, v) R(x, y)$) ($uy = vx$) \therefore R is Symmetric Reflexive : for each $(x, y) \in A$ $\Rightarrow xy = yx$ {Rough work} $\Rightarrow (x, y) R(x, y)$ {Rough work} $\Rightarrow xv = yx$ {Rough work} $xy = yx$ } Transitive : let $(x, y) R(u, v)$ and $(u, v) R(a, b)$ $\Rightarrow xv = yu$ and $v = \frac{ub}{a}$ {Rough $(x, y) R(a, b)$, $xb = ya$ } $\Rightarrow xv = yu$ and $v = \frac{ub}{a}$ {Rough $(x, y) R(a, b)$, $xb = ya$ } $\Rightarrow xb = ya$ $\Rightarrow (x, y) R(a, b)$ \therefore R is transitive since R is Symmetric, Reflexive as well as transitive \therefore R is an Equivalence relation ans.
Q.4)	If R_1 and R_2 are equivalence relations in set A , show that $R_1 \cap R_2$ is also on equivalence relation.
Sol.4)	Given :- R_1 and R_2 are equivalence relations Symmetric :

	$let (a, b) \in R_1 \cap R_2$ $\Rightarrow (a, b) \in R_1 \text{ and } (a, b) \in R_2$ $\Rightarrow (b, a) \in R_1 \text{ and } (b, a) \in R_2 \dots \{: \mathbb{R} \text{ and } \mathbb{R} \text{ are symmetric relations}\}$ $\Rightarrow (b, a) \in R_1 \text{ and } (b, a) \in R_2 \dots \{: \mathbb{R} \text{ and } \mathbb{R} \text{ are symmetric relations}\}$ $\Rightarrow (b, a) \in R_1 \cap R_2$ $\therefore R_1 \cap R_2 \text{ is Symmetric}$ Reflexive : for each $a \in A$ we have, $(a, a) \in R_1$ and $(a, a) \in R_2 \dots \dots \{: \mathbb{R} 1 \text{ and } R_2 \text{ are reflexive}\}$ $\Rightarrow (a, a) \in R_1 \cap R_2$ $\therefore R_1 \cap R_2 \text{ is Reflexive}$ Transitive : let $(a, b) \in R_1 \cap R_2$ and $(b, c)R_1 \cap R_2$ $\Rightarrow (a, b) \in R_1 \text{ and } (a, b) \in R_2 \text{ and } (b, c) \in R_1 \ (a, b) \text{ R and } (b, c) \in R_2$ $\Rightarrow (a, b) \in R_1 \text{ and } (b, c) \in R_1 (a, b) \text{ R and } (b, c) \in R_2$ $\Rightarrow (a, c) \in R \qquad (a, c) \in R_2$ $\therefore (R_1 \cap R_2 \text{ is transitive}$ since $R_1 \cap R_2$ is Symmetric, Reflexive as well as transitive $\therefore R_1 \cap R_2 \text{ is nequivalence relation ans.}$
Q.5)	<i>R</i> is a relation on set <i>N</i> given by $aRb \leftrightarrow b$ is divisible by $a; a, b \in N$ check whether R is Symmetric , reflexive and transitive.
Sol.5)	We have, $aRb \leftrightarrow b$ is divisible by a Symmetric : $2R6 \Rightarrow 6$ is divisible by 2 $\dots \left\{\frac{6}{2} = 3\right\}$ but $6R2 \Rightarrow 2$ is not div by 6 $\dots \left\{\frac{2}{6} = \frac{1}{2}\right\}$ \therefore R is not symmetric Reflexive : for each $a \in N$ a is always divisible by a $\Rightarrow aRa$ \therefore R is Reflexive Transitive : let aRb and bRc \Rightarrow b is divisible by a and c is div by b $\Rightarrow b = a\lambda$ and $c = bk \dots \{\lambda, k \epsilon N\}$ $\Rightarrow c = (a\lambda)k \qquad \dots \{\ldots, b = a\lambda\}$ $\Rightarrow \frac{c}{a} = \lambda k$ clearly c is div by a $\Rightarrow aRc$ \therefore R is transitive ans.
Q.6)	R be relation in P(x) , where x is a non-empty set , given by ARB if only if ACB , where A & B are subsets in $P(x)$. Is R is an equivalence relation on $P(x)$? Justify

	your answer.
Sol.6)	Let ARB $\Rightarrow A \subset B$ then it is not necessary that B is a subset of A i.e. $B \not\subset A$ \Rightarrow B R A \therefore R is not symmetric and hence R is not an equivalence relation eg. $x = \{1,2,3\}$ $P(x) = \{\{1\}\{2\}\{3\}\{1,2\}\{2,3\}\{1,3\}\{1,2,3\}\}$ clearly $\{2\} \subset \{1,2\}$ between $\{1,2\} \subset \{2\}$ \therefore R is not symmetric ans.
Q.7)	Show that the relation R defined in the set A of all triangles as $R-{(T_1, T_2) : T_1 is similar to T_2}$ is equivalence relation. Consider three right angle triangles T_1 with sides 3, 4, 5, T_2 with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1 , T_2 and T_3 are related ?
Sol.7)	A → set of are triangles $R = \{(T_1, T_2) : T_1 ~ T_2\}$ Symmetric: let $(T_1, T_2) \in R$ $\Rightarrow T_1 ~ T_2$ $\Rightarrow T_2 ~ T_1$ $\Rightarrow (T_2, T_1) \in R$ \therefore R is symmetric Reflexive : for each triangle $T \in A$ $(T, T) \in R$ since every triangle is similar to itself \therefore R is reflexive Transitive : let $(T_1, T_2) \in R$ and $(T_2 ~ T_3) \in R$ $\Rightarrow T_1 ~ T_2$ and $T_2 ~ T_3$ $\Rightarrow T_1 ~ T_3$ $\Rightarrow T_1 ~ T_3 \in R$ \therefore R is transitive and hence R is an equivalence relation $T_1 : 3, 4, 5$ $T_2 : 5, 12, 13$ $T_3 : 6, 8, 10$ clearly sides of triangles T_1 and T_3 are in equal proportion i.e $\frac{3}{6} = \frac{4}{8} = \frac{5}{10}$ $\therefore T_1 ~ T_3$ $\Rightarrow T_1$ and T_3 are related to each other ans.
Q.8)	Check whether the relation R in R (real no's) define by $R = (a, b)$: $a \le b^3$ is reflexive, symmetric or transitive.

Sol.8)	Symmetric : $(1,2) \in R$ $as1 \leq 2^3$ but $(2,1) \notin R$ $since2 \leq 13$ \therefore R is not symmetric Reflexive : $\frac{1}{2} \in R$ but $(\frac{1}{2}, \frac{1}{2}) \notin R$ $as \frac{1}{2} \leq (\frac{1}{2})^3$ \therefore R is not reflexive Transitive : $(9,4) \in Rand(4,2) \in R$ $as 9 \leq 4^3$ and $4 \leq 2^3$
	but $(9,2) \notin R$ since $9 \nleq 2^3$ \therefore R is not transitive ans.
Q.9)	Show that the relation R in the set $\{1,2,3\}$ given by R = $\{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ is reflexive neither symmetric nor transitive.
Sol.9)	We have, $A = \{1,2,3\}$ $R = \{(1,1), (2,2), (3,3), (1,2), (2,3)\}$ since $(1,2) \in R$ but $(2,1) \notin R$ \therefore R is not Symmetric $(1,2) \in Rand(2,3) \in R$ but $(1,3) \notin R$ \therefore R is not transitive for each $a \in A$ $(a, a) \in R$ i.e. $(1,1), (2,2), (3,3) \in R$ \therefore R is reflexive ans.
Q.10)	Determine whether each of the following relations are reflexive, symmetric and transitive (i) Relation in set A = {1,2,3,, 13,14} defined by $R = (x, y): 3x - y = 0$. (ii) Relation in N defined as $R = (x, y): y = x + 5; x < 4$. (iii) Relation in set A = {1,2,3,4,5,6} defined as $R = (x, y): y$ is divisible by x . (iv) Relation in Z defined as $R = (x, y): x - y$ is an integer. (v) Relation in R (real nos) defined as $R = (a, b): a \le b^2$.
Sol.10)	(i) $R = \{(1,3), (2,6), (3,9), (4,12)\}$ $(y = 3x)$ clearly $(1,3) \in R$ but $(3,1) \notin R$ \therefore not symmetric $1 \in A$ but $(1,1) \notin R$ \therefore not reflexive

```
(1,3) \in R and (3,9) \in R but(1,9) \notin R
... not transitive
(ii) R = \{(1,6), (2,7), (3,8)\} ..... \{\dots, y = x + 5 \text{ and } x < 4\}
    Do yourself
(iii) R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6)\}...\{...y \text{ is divisible by } x\}
clearly for each a \in A
(a, a) \in R i.e. (1,1), (2,2), (3,3), (4,4), (5,5), (6,6) \in R
. R is reflexive
(1,2) \in R
but(2,1) \notin R
since 1 in not divisible by 2
. R is not transitive
for each (a, b) and (b, c) \in R
clearly (a, c) \in R
. R is transitive
(iv) Symmetric let (x, y) \in R
\Rightarrow x - y = \lambda ..... where \lambda \rightarrow integer
\Rightarrow y - x = -\lambda which is also an integer
\Rightarrow (y, x) \in R
... R is Symmetric
Reflexive and transitive (Do yourself)
(v) give same examples as in case of a \le b^3
It is neither symmetric, nor reflexive, nor transitive.
```