Class $12^{\text {th }}$
 Relations \& Functions

Q.1)	Show that the relation R in set Z given by $R\{(a, b): 2$ divides $a-b\}$ is an Equivalence relation.
Sol.1)	We have, $R=\{(a, b): 2$ divide $a-b\}$ Symmetric: $\text { let }(a, b) \in R$ $\Rightarrow a-b$ is divisible by 2 $\Rightarrow a-b=2 \lambda \quad$...... $\{\lambda \in Z\}$ $\Rightarrow b-a=-2 \lambda$ which is also divisible by 2 $\Rightarrow(b, a) \in$ $\therefore \quad \mathrm{R}$ is Symmetric Reflexive : for each $a \in Z$ $\begin{aligned} & \Rightarrow a-a=0 \text { which is divisible by } 2 \\ & \Rightarrow(a, a) \in R \end{aligned}$ $\therefore \mathrm{R}$ is Reflexive Transitive : let $(a, b) \in R$ and $(b, c) \in R$ $\Rightarrow a-b=2 \lambda \text { and } b-c=2 k \quad \ldots . .\{\lambda, k \in Z\}$ Now, $a-c=(a-b)+(b-c)$ $\Rightarrow a-c=2 \lambda+2 k$ $\Rightarrow a-c=2(\lambda+k)$ which is also divisible by 2 $\Rightarrow(a, c) \in R$ $\therefore \quad R$ is transitive since R is Symmetric, Reflexive and transitive $\therefore R$ is an Equivalence relation ans.
Q.2)	Show that the relation R in the set $\mathrm{A}, A=\{x \in z: 0 \leq x \leq 12\}$ given by $R=\{(a, b):(a-b)$ is multiple of 4$\}$ is an equivalence relation. Find the set of all the elements in set A which are related to 1.
Sol.2)	We have, $R=\{(a, b):\|a-b\|$ is multiple of 4\} Symmetric: $\begin{aligned} & \text { let }(a, b) \in R \\ \Rightarrow & \|a-b\| \text { is multiple of } 4 \\ \Rightarrow & \|a-b\|=4 \lambda \quad \ldots . . .(\lambda \epsilon z) \\ \Rightarrow & \|b-a\|=4 \lambda \quad \text { which is multiple by } 4 \\ \Rightarrow & (b, a) \in R \\ \therefore & R \text { is Symmetric } \end{aligned}$ Reflexive: $\text { for each } a \in A$ we have, $\|a-a\|=0$ which is multiple of 4 $\Rightarrow(a, a) \in R$ $\therefore R \text { is Reflexive }$ Transitive :

	$\begin{aligned} & \text { let }(a, b) \in R \text { and }(b, c) \in R \\ & \Rightarrow\|a-b\|=4 \lambda \text { and }\|b-c\|=4 k \quad \ldots . .\{\lambda, k \in Z\} \\ & \Rightarrow(a-b)= \pm 4 \lambda \text { and }(b-c)=-4 k \\ & \text { Now },(a-c)=(a-b)+(b-c) \\ & \Rightarrow(a-c)= \pm 4 \lambda \pm 4 k \\ & \Rightarrow(a-c)= \pm 4(\lambda+k) \\ & \Rightarrow\|a-c\|=\|\lambda+k\| \text { which is multiple of } 4 \\ & \Rightarrow(a, c) \in R \end{aligned}$ $\therefore \mathrm{R}$ is transitive $\therefore \mathrm{R}$ is an Equivalence relation The elements which related to 1 are 1,5, 9 \therefore required set is $\{1,5,9\} \quad$ ans.
Q.3)	Let R be a relation on the set " A " of ordered pairs defined by $(x, y) R(u, v)$ if and only if $x v=y u$. Show that R is an equivalence relation.
Sol.3)	Given : A \rightarrow set of ordered pairs $(x, y) R(u, v) \Rightarrow x v=y u$ Symmetric: $\text { let }(x, y) R(u, v)$ $\begin{array}{l\|l} \Rightarrow x v=y u & (\text { Rough work) } \\ \Rightarrow v x=u y & (4, v) R(x, y) \\ \Rightarrow u y=v x \Rightarrow(u, v) R(x, y)) \\ (u y=v x) \end{array}$ $\therefore \quad \mathrm{R}$ is Symmetric $\begin{array}{\|l\|c} \begin{array}{l} \text { Reflexive : } \\ \quad \text { for each }(\mathrm{x}, \mathrm{y}) \in \mathrm{A} \\ \Rightarrow x y=y x \end{array} & \\ \Rightarrow(x, y) R(x, y) & \{\text { Rough work }\} \\ \therefore \quad \text { R is Reflexive } & \{(x, y) R(x y)\} \\ \text { (xy=yx\}} \end{array}$ Transitive: $\text { let }(x, y) R(u, v) \text { and }(u, v) R(a, b)$ $\Rightarrow x v=y u$ and $u b=v a$ $\Rightarrow x v=y u$ and $v=\frac{u b}{a} \quad \ldots .\{\operatorname{Rough}(x, y) R(a, b), x b=y a\}$ $\Rightarrow x\left(\frac{u b}{a}\right)=y u$ $\Rightarrow x b=y a$ $\Rightarrow(x, y) R(a, b)$ $\therefore \quad \mathrm{R}$ is transitive since R is Symmetric, Reflexive as well as transitive $\therefore \mathrm{R}$ is an Equivalence relation ans.
Q.4)	If R_{1} and R_{2} are equivalence relations in set A , show that $R_{1} \cap R_{2}$ is also on equivalence relation.
Sol.4)	Given :- R_{1} and R_{2} are equivalence relations Symmetric:


	```let \((a, b) \in R_{1} \cap R_{2}\) \(\Rightarrow(a, b) \in R_{1}\) and \((a, b) \in R_{2}\) \(\Rightarrow(b, a) \in R_{1}\) and \((b, a) \in R_{2} \quad \ldots . .\{\because R\) and \(R\) are symmetric relations \(\}\) \(\Rightarrow(b, a) \in R_{1} \cap R_{2}\) \(\therefore \quad R_{1} \cap R_{2}\) is Symmetric Reflexive : for each \(a \in A\) we have, \((a, a) \in R_{1}\) and \((a, a) \in R_{2} \ldots \ldots \ldots \ldots .\left\{R 1\right.\) and \(R_{2}\) are reflexive \(\}\) \(\Rightarrow(a, a) \in R_{1} \cap R_{2}\) \(\therefore \quad R_{1} \cap R_{2}\) is Reflexive Transitive : let \((a, b) \in R_{1} \cap R_{2}\) and \((b, c) R_{1} \cap R_{2}\) \(\Rightarrow(a, b) \in R_{1}\) and \((a, b) \in R_{2}\) and \((b, c) \in R_{1} \&(b, c) \in R_{2}\) \(\Rightarrow(a, b) \in R_{1}\) and \((b, c) \in R_{1} \quad \mid(a, b) R\) and \((b, c) \in R_{2}\) \(\Rightarrow(a, c) \in R \quad \mid(a, c) \in R_{2}\) \(\ldots .\left\{R_{1} \& R_{2}\right.\) are transitive \(\}\) \(\Rightarrow \quad(a, c) \in R_{1} \cap R_{2}\) \(\therefore \quad R_{1} \cap R_{2}\) is transitive since \(R_{1} \cap R_{2}\) is Symmetric, Reflexive as well as transitive \(\therefore R_{1} \cap R_{2}\) is an Equivalence relation ans.```
Q.5)	$R$ is a relation on set $N$ given by $a R b \leftrightarrow b$ is divisible by $a$; $a . b \in N$ check whether R is Symmetric, reflexive and transitive.
Sol.5)	We have, $a R b \leftrightarrow b$ is divisible by $a$ Symmetric: $\begin{aligned} & 2 R 6 \Rightarrow 6 \text { is divisible by } 2 \quad \ldots .\left\{\frac{6}{2}=3\right\} \\ & \text { but } 6 R 2 \Rightarrow 2 \text { is not div by } 6 \quad \ldots . .\left\{\frac{2}{6}=\frac{1}{2}\right\} \\ & \therefore R \text { is not symmetric } \\ & \text { Reflexive }: \text { for each } a \in N \\ & \text { a is always divisible by a } \\ & \quad \Rightarrow a R a \\ & \therefore \text { R is Reflexive } \\ & \text { Transitive : } \\ & \quad \text { let } a R b \text { and } b R c \\ & \Rightarrow b \text { is divisible by a and } c \text { is div by } b \\ & \Rightarrow b=a \lambda \text { and } c=b k \quad \ldots .\{\lambda, k \in N\} \\ & \Rightarrow c=(a \lambda) k \\ & \Rightarrow \frac{c}{a}=\lambda k \\ & \text { clearly } c \text { is div by a } \\ & \Rightarrow a R c \\ & \therefore R \text { is transitive } \quad \text { ans. } \end{aligned}$
Q.6)	$R$ be relation in $P(x)$, where $x$ is a non-empty set, given by ARB if only if ACB , where $\mathrm{A} \& \mathrm{~B}$ are subsets in $P(x)$. Is R is an equivalence relation on $P(x)$ ? Justify


	your answer.
Sol.6)	Let ARB $\Rightarrow A \subset B$   then it is not necessary that $B$ is a subset of $A$ $\text { i.e. } B \not \subset A$ $\Rightarrow \mathrm{BRA}$   $\therefore \mathrm{R}$ is not symmetric and hence R is not an equivalence relation $\begin{aligned} & \text { eg. } x=\{1,2,3\} \\ & \quad P(x)=\{\{1\}\{2\}\{3\}\{1,2\}\{2,3\}\{1,3\}\{1,2,3\}\} \\ & \text { clearly }\{2\} \subset\{1,2\} \\ & \text { between }\{1,2\} \subset\{2\} \end{aligned}$   $\therefore \mathrm{R}$ is not symmetric ans.
Q.7)	Show that the relation $R$ defined in the set $A$ of all triangles as $R-\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is similar to $\left.T_{2}\right\}$ is equivalence relation.   Consider three right angle triangles $T_{1}$ with sides $3,4,5, T_{2}$ with sides $5,12,13$ and $T_{3}$ with sides 6,8 , 10. Which triangles among $T_{1}, T_{2}$ and $T_{3}$ are related ?
Sol.7)	A $\rightarrow$ set of are triangles $R=\left\{\left(T_{1}, T_{2}\right): T_{1} \sim T_{2}\right\}$   Symmetric: $\begin{aligned} & \text { let }\left(T_{1}, T_{2}\right) \in R \\ \Rightarrow & T_{1} \sim T_{2} \\ \Rightarrow & T_{2} \sim T_{1} \\ \Rightarrow & \left(T_{2}, T_{1}\right) \in R \\ \therefore & \text { is symmetric } \end{aligned}$   Reflexive : for each triangle $T \in A$ $(T, T) \in R$   since every triangle is similar to itself   $\therefore \mathrm{R}$ is reflexive   Transitive : $\text { let }\left(T_{1}, T_{2}\right) \in R \text { and }\left(T_{2} \sim T_{3}\right) \in R$   $\Rightarrow T_{1} \sim T_{2}$ and $T_{2} \sim T_{3}$ $\Rightarrow \quad T_{1} \sim T_{3}$ $\left.\Rightarrow \quad T_{1}, T_{3}\right) \in R$   $\therefore R$ is transitive   and hence $R$ is an equivalence relation $\begin{aligned} & T_{1}: 3,4,5 \\ & T_{2}: 5,12,13 \\ & T_{3}: 6,8,10 \end{aligned}$   clearly sides of triangles $T_{1}$ and $T_{3}$ are in equal proportion i.e $\frac{3}{6}=\frac{4}{8}=\frac{5}{10}$ $\therefore \mathrm{T}_{1} \sim \mathrm{~T}_{3}$   $\Rightarrow \mathrm{T}_{1}$ and $\mathrm{T}_{3}$ are related to each other
Q.8)	Check whether the relation R in R (real no's) define by $R=(a, b)$ : $a \leq b^{3}$ is reflexive, symmetric or transitive.


Sol.8)	Symmetric : $\begin{aligned} & (1,2) \in R \\ & \text { as } 1 \leq 2^{3} \\ & \text { but }(2,1) \notin R \\ & \text { since } \nsubseteq 13 \end{aligned}$   $\therefore \mathrm{R}$ is not symmetric   Reflexive : $\frac{1}{2} \in R$   but $\left(\frac{1}{2}, \frac{1}{2}\right) \notin R$   as $\frac{1}{2} \nsubseteq\left(\frac{1}{2}\right)^{3}$   $\therefore \mathrm{R}$ is not reflexive   Transitive :   $(9,4) \in R$ and $(4,2) \in R$   as $9 \leq 4^{3}$ and $4 \leq 2^{3}$   $\operatorname{but}(9,2) \notin R$   since $9 \not \leq 2^{3}$   $\therefore \mathrm{R}$ is not transitive   ans.
Q.9)	Show that the relation $R$ in the set $\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is reflexive neither symmetric nor transitive.
Sol.9)	We have, $\begin{aligned} & A=\{1,2,3\} \\ & R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\} \\ & \text { since }(1,2) \in R \\ & \text { but }(2,1) \notin R \\ & \therefore R \text { is not Symmetric } \\ & (1,2) \in R \text { and }(2,3) \in R \\ & \text { but }(1,3) \notin R \\ & \therefore \text { R is not transitive } \\ & \text { for each } a \in A \\ & (a, a) \in R \text { i.e. }(1,1),(2,2),(3,3) \in R \\ & \therefore R \text { is reflexive ans. } \end{aligned}$
Q.10)	Determine whether each of the following relations are reflexive, symmetric and transitive (i) Relation in set $\mathrm{A}=\{1,2,3, \ldots \ldots \ldots . .13,14\}$ defined by $R=(x, y): 3 \mathrm{x}-y=0$.   (ii) Relation in N defined as $R=(x, y): y=x+5 ; x<4$.   (iii) Relation in set $\mathrm{A}=\{1,2,3,4,5,6\}$ defined as $R=(x, y)$ : $y$ is divisible by $x$.   (iv) Relation in $Z$ defined as $R=(x, y): x-y$ is an integer.   (v) Relation in R (real nos) defined as $R=(a, b): a \leq b^{2}$.
Sol.10)	$\begin{aligned} & \text { (i) } R=\{(1,3),(2,6),(3,9),(4,12)\} \quad \ldots . . .(y=3 \mathrm{x}) \\ & \text { clearly }(1,3) \in R \text { but }(3,1) \notin R \\ & \therefore \text { not symmetric } \\ & 1 \in A \text { but }(1,1) \notin R \\ & \therefore \text { not reflexive } \end{aligned}$

```
\((1,3) \in R\) and \((3,9) \in R \operatorname{but}(1,9) \notin R\)
\(\therefore\) not transitive
(ii) \(R=\{(1,6),(2,7),(3,8)\} \quad \ldots . .\{\ldots y=x+5\) and \(x<4\}\)
Do yourself
(iii) \(R=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(5,5),(6,6)\} \ldots\{\ldots y\) is divisible by \(x\}\)
clearly for each \(a \in A\)
\((a, a) \in R\) i.e. \((1,1),(2,2),(3,3),(4,4),(5,5),(6,6) \in R\)
\(\therefore R\) is reflexive
\((1,2) \in R\)
\(\operatorname{but}(2,1) \notin R\)
since 1 in not divisible by 2
\(\therefore R\) is not transitive
for each \((a, b)\) and \((b, c) \in R\)
clearly \((a, c) \in R\)
\(\therefore \mathrm{R}\) is transitive
(iv) Symmetric let \((x, y) \in R\)
\(\Rightarrow x-y=\lambda \quad\)..... where \(\lambda \rightarrow\) integer
\(\Rightarrow y-x=-\lambda\) which is also an integer
\(\Rightarrow(y, x) \in R\)
\(\therefore \mathrm{R}\) is Symmetric
Reflexive and transitive (Do yourself)
(v) give same examples as in case of \(a \leq b^{3}\)
It is neither symmetric, nor reflexive, nor transitive.
```

