RELATIONS AND FUNCTIONS

FOUR MARKS QUESTIONS

1. Show that the relation R in the set N of Natural numbers given by
$\mathrm{R}=\{(a, b):|a-b|$ is a multiple of 3$\}$ is an equivalence relation.
Determine whether each of the following relations are reflexive, symmetric, and
Transitive.
2. Check whether the relation R in R defined by $\mathrm{R}=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric, transitive.
3. Prove the relation R on the set $N x N$ defined by $(a, b) R(c, d) \Leftrightarrow a+d=b+c$, for all $(\mathrm{a}, \mathrm{b})(\mathrm{c}, \mathrm{d}) \in \mathrm{Nx} \mathrm{N}$ is an equivalence relation.
4. Prove that the function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by $f(x)=|x|+5$, is not bijective.
5. Prove that the function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by $f(x)=4 x^{3}-7$, is bijective
6. Prove that the Greatest Integer Function $\mathrm{f}: \mathrm{R} \rightarrow \mathbf{R}$ given by $\mathrm{f}(\mathrm{x})=[x]$, is neither oneone nor onto where $[x]$ denotes the greatest intger less than or equal to x .
7. Let $f: \mathbf{N} \rightarrow \mathbf{N}$ be defined by

$$
\mathrm{f}(\mathrm{n})=\left\{\begin{array}{l}
\frac{n+1}{2} \text { if } n \text { is odd } \\
\frac{n}{2} \text { if } n \text { is even }
\end{array} \text { for alln } \mathbf{N},\right.
$$

State whether the function f is bijective.
9. Consider that $\mathrm{f}: \mathbf{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=x^{2}+x+1$. Show that f is not invertible.
10. Let $A=\mathbf{N} \mathbf{x} \mathbf{N}$ and ${ }^{*}$ be the binary operation on \mathbf{A} defined by $(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{ad}+\mathrm{bc}, \mathrm{bd})$. Show that $*$ is commutative and associative . Find the identity element for * on A, if any.
11. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be the function defined by $f(x)=\frac{1}{2-\cos x} \forall x \in R$. Then find the range of f. (Exemplar).

FOUR MARKS QUESTIONS

11. Let $\mathrm{f}: \mathbf{N} \rightarrow \boldsymbol{R}$ be a function defined as $\mathrm{f}(\mathrm{x})=4 x^{2}+12 \mathrm{x}+15$. Show that $\mathrm{f}: \mathbf{N} \rightarrow \boldsymbol{S}$, where \mathbf{S} is the range of f is invertible . Find the inverse of f .
12. Consider $\mathrm{f}: \mathbf{R}+\rightarrow \mid\left[-5\right.$,) given by $\mathrm{f}(\mathrm{x})=9 x^{2}+6 x-5$. Show that f is invertible. Find the inverse of f.
13. Let * be the binary operation on Z given by $a * b=a+b-15.1$) Is * commutative?
2) Is * associative 3) Does the identity for *exist? If yes find the identity.
3) Are the elements of Z invertible? If so find the inverse.
14. Let $\mathrm{A}=A=R-\{3\}, B=R-\{1\}$. Let $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3} \forall x \in A$.

Then show that f is bijective.(Exemplar).

