MATRICES

ONE MARKS QUESTIONS

1. Show by means of an example that the product of two non- zero matrices can be a zero matrix.
2. Construct a 3×2 matrix whose elements are given by $a_{i j}=e^{i x} \operatorname{sinj} x$. (Exemplar)
3. Solve for x and y for $x\left[\begin{array}{l}2 \\ 1\end{array}\right]+y\left[\begin{array}{l}3 \\ 5\end{array}\right]+\left[\begin{array}{c}-8 \\ -11\end{array}\right]=0$ (Exemplar).
4. Give an example of matrices A, B and C such that $\mathrm{AB}=\mathrm{AC}$, Where A is non-zero matrix, but $\mathrm{B} \neq \mathrm{C}$.
5. Show that $A^{T} A$ and $A A^{T}$ are both symmetric matrices for any matrix A. (Exemplar).

FOUR MARKS QUESTIONS

6. If $A=\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$ prove that $\mathrm{A}^{2}-4 \mathrm{~A}-5 \mathrm{I}=$ Hence find A^{-1}
7. Given $A=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)$ show by induction that $A^{n}=\left(\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right)$
8. If $X=\left[\begin{array}{ccc}3 & 1 & -1 \\ 5 & -2 & -3\end{array}\right]$ and $Y=\left[\begin{array}{ccc}2 & 1 & -1 \\ 7 & 2 & 4\end{array}\right]$, Find a matrix Z such that $\mathrm{X}+\mathrm{Y}+\mathrm{Z}$ is a zero matrix. (Exemplar).
9. Find the matrix A satisfying the matrix equation :
$\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. (Exemplar).
10. Prove by mathematical induction that
$\left(A^{T}\right)^{n}=\left(A^{n}\right)^{T}$, where $n \in N$ for any square matrix A. (Exemplar).
11. If $F(\theta)=\left(\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$ show that $F(\theta) F(\varphi)=F(\theta+\varphi)$.
12. Find the inverse by elementary Operations $\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 3 & -1 \\ 3 & 2 & 1\end{array}\right]$.
13. Express the matrix $\left[\begin{array}{ccc}2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2\end{array}\right]$ as the sum of a symmetric and skew symmetric matrix. (Exemplar).
14. Find the value of x, if
$\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]=0$.
