Determinants Class 12th

Solving System of Linear Equations (Matrix Method)			
Q.1)	An amount of Rs 5000 is put in to three investments at the rate of interest of 6%,7% and		
	8 % per annum. The total annual income is Rs 358. If the combined income from the first		
	two investments is Rs 70 more than the income from the third, find the amount of each		
	investment by matrix method.		
Sol.1)	Let $Rs. x$, $Rs. y$ and $Rs. z$ be the investments		
	from given conditions: $x + y + z = 5000$ (1)		
	$\frac{6}{100} \times x + \frac{7}{100} \times y + \frac{8}{100} \times z = 358$		
	(or) $6x + 7y + 8z = 35800$ (2)		
	and $\frac{6x}{100} + \frac{7y}{100} = \frac{8z}{100} + 70$ {combined income from first two is 70 more than		
	3 rd }		
	(or) $6x + 7y - 8z = 7000$ (3)		
	: the equations are		
	x + y + z = 5000		
	6x + 7y + 8z = 35800		
	6x + 7y - 8z = 7000		
	\rightarrow Now solve by yourself using $x = A^{-1}B$		
	$x = Rs \ 1000$; $y = Rs \ 2200$; $z = Rs \ 1800$ ans.		
Q.2)	Two institutions decided to award their employees for the three values of resourcefulness,		
	competence and determination in the form of prizes at the rate Rs x , Rs y , Rs ,z		
	respectively per person. The first institution decided to award respectively 4, 3 and		
	2employees with a total prize money of Rs.37000 and the second institution decided to		
	award respectively 5, 3 and 4 employees with a total prize money of Rs.47000. If all the		
	three prizes per person together amount to Rs.12000 then by matrix method. Find the		
	value of x , y and z.		
Sol.2)	Here Rs., Rs. y and Rs. z are the award money for resourcefulness, competence and		
	determination respectively		
	from above data/condition, the equation are $4\pi + 2\pi + 2\pi = 27000$		
	4x + 5y + 22 = 57000 5x + 3y + 4z = 47000		
	3x + 3y + 4z = 47000 x + y + z = 12000		
	$(Do vourself using X = A^{-1}B)$		
	Rs. 4000 Rs. 5000 Rs. 3000 ans.		
Q.3)	Two school's P and Q decided to award prizes for (1) academic (2) sports (3) all-rounder		
	achievements. School P awarded Rs 12000 to 3, 1, 1 students while Q awarded Rs 7,000		
	to 1, 0, 2 students in the above categories. All the three prizes amount to Rs 6000. Find		
	matrix representation of the above situation form equations and solve them by matrix		
	method to find value of each prize. Do you agree that prizes should be given for honestly		
	and good character also? Give reasons.		
Sol.3)	Let Rs. x, Rs. y, and Rs z are the awarded money for academic, sports and all rounder		
	achievement respectively		
	the matrix form is		
	$\begin{bmatrix} 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 & 2000 \end{bmatrix}$		
	$\begin{vmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \end{vmatrix} \begin{vmatrix} y \\ y \end{vmatrix} = \begin{vmatrix} 7000 \\ 7000 \end{vmatrix}$		
	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} L^{ZJ} \begin{bmatrix} 6000 \end{bmatrix}$		
	$(UI) A A - D \implies A = A B$ Equations are $3r \pm y \pm z = 12000$		
	Equations are $3x + y + 2 = 12000$ x + 0y + 2z = 7000		
	x + 0y + 22 - 7000		

and $x + y + z = 600$	
Rs. 3000 , Rs 1000 and Rs 2000	ans.

Properties of Determinates & Adjoint

Show that A = $\begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$ satisfies the equation $f(x) = x^2 - 6x + 17 = 0$. Hence find Q.4) A^{-1} . We have $A = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$ $A^2 = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} -5 & -18 \\ 18 & 7 \end{bmatrix}$ given $f(x) = x^2 - 6x + 17$ Sol.4) $\Rightarrow f(A) = A^{2} - 6A + 17I$ = $\begin{bmatrix} -5 & -18\\ 18 & 7 \end{bmatrix} - \begin{bmatrix} 12 & -18\\ 18 & 24 \end{bmatrix} + \begin{bmatrix} 17 & 0\\ 0 & 17 \end{bmatrix}$ $A^{2} - 6A + 17I = \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix} = 0$ Clearly A satisfies the equation $x^2 - 6x + 17 = 0$ Now we have, $A^2 - 6A + 17I = 0$ Pre-multiply by A⁻¹ $\Rightarrow A^{-1}A^2 - 6A^{-1}A + 17A^{-1}I = A^{-1}0$ $\Rightarrow A^{-1}A \cdot A - 6I + 17A^{-1} = 0$ \Rightarrow IA - 6 I + 17A⁻¹ = 0 \Rightarrow A - 6 I + 17A⁻¹ = 0 $= 17A^{-1} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} - \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 2 \end{bmatrix}$ $\Rightarrow A^{-1} = \frac{1}{17} \begin{bmatrix} 4 & 3 \\ -3 & 2 \end{bmatrix} \quad \text{ans.}$ If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$ show that $A^3 - 6A^2 + 5A + 11I = 0$ and hence find A^{-1} . Q.5) $A = \begin{bmatrix} 12 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$ $A^{2} = A \cdot A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix}$ $A^{3} = A^{2} \cdot A = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix}$ Now $A^{3} - 6A^{2} + 5A + 111$ Sol.5) $= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix} - 6 \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} + 5 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} + 11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0$ (proved) (ii) we have $A^3 - 6A^2 + 5A + 11I = 0$ Pre-multiply by A⁻¹ $\Rightarrow A^{-1}A^3 - 6A^{-1}A^2 + 5AA^{-1} + 11A^{-1}I = A^{-1}0$ $\Rightarrow A^{-1}A \cdot A^2 - 6A^{-1}A \cdot A + 5I + 11A^{-1}I = 0$ $\Rightarrow I A^2 - 6 I A + 5 I + 11 A^{-1} = 0$ $\Rightarrow A^2 - 6A + 5I + 11A^{-1} = 0$ $\Rightarrow 11A^{-1} = 6A - A^2 - 5I$

$$= 6 \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} - \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \\ 5 & -3 & -1 \\ 3 & 4 & 5 \\ 5 & -3 & -1 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{11} \begin{bmatrix} -3 & 4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1 \end{bmatrix}$$
 ans.
Q.6) If B $\begin{bmatrix} 1 & -2 \\ 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$. Find matrix B using inverse concept.
Sol.6) Let A = $\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$ and C = $\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$
then we have, ABA = C
post multiply by A^{-1}

$$\Rightarrow BAA^{-1} = CA^{-1}$$

$$B = CA^{-1}$$

$$|A| = 4 + 2 = 6$$

 $(AdjA) = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$
Now B = CA^{-1}

$$B = \frac{1}{6} \begin{bmatrix} 6 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$$

Now B = CA^{-1}

$$B = \frac{1}{6} \begin{bmatrix} 6 & 0 \\ 0 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$$

Now B = CA^{-1}

$$B = \frac{1}{6} \begin{bmatrix} 6 & 0 \\ 0 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$$

Now B = CA^{-1}

$$B = \frac{1}{6} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

then we have B A C = D
pre-multiply by B^{-1} and post multiply by C^{-1}

$$\Rightarrow B B^{-1}A C^{-1} = B^{-1}DC^{-1}$$

$$\Rightarrow A = B^{-1}DC^{-1}$$

$$\Rightarrow A = B^{-1}DC^{-1}$$

$$A = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 2 \\ -3 & 2 \end{bmatrix} \xrightarrow{find yourself}$$

and $C^{-1} = \begin{bmatrix} 3 & 2 \\ -3 & 2 \end{bmatrix} \xrightarrow{find yourself}$

$$A = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & -2 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -7 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 2 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} -7 & -3 \\ -8 & 6 \end{bmatrix}$$

(find yourself)

$$A = \begin{bmatrix} 3 & 2 \\ -7 & 3 \end{bmatrix} = \begin{bmatrix} 6 & 7 \\ -8 & 6 \end{bmatrix}$$

$$|A| = 15 - 14 = 1$$

$$|B| = 54 - 56 = -2$$

$$Adj A = \begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix} = B^{-1} = -\frac{1}{2}\begin{bmatrix} 9 & -7 \\ -8 & 6 \end{bmatrix}$$

$$|A| = 15 - 14 = 1$$

$$|B| = 54 - 56 = -2$$

$$Adj A = \begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix} = B^{-1} = -\frac{1}{2}\begin{bmatrix} 9 & -7 \\ -8 & 6 \end{bmatrix}$$

Now $AB = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} \begin{bmatrix} 6 & 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 3^{4} & 39 \\ 82 & 94 \end{bmatrix}$

$$|A| = 15 - 48 - 8 = -2$$

$$Adj A = \begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix} = B^{-1} = -\frac{1}{2}\begin{bmatrix} 9 & -7 \\ -8 & 6 \end{bmatrix}$$

Adj(AB) =
$$\begin{bmatrix} 94 & -39\\ -82 & 34 \end{bmatrix}$$

(AB)⁻¹ = $-\frac{1}{2}\begin{bmatrix} 94 & -39\\ -82 & 34 \end{bmatrix}$
Taking RHS = B⁻¹A⁻¹
= $-\frac{1}{2}\begin{bmatrix} 94 & -39\\ -84 & 33 \end{bmatrix} = (AB)^{-1}$
Hence (AB)⁻¹ = B⁻¹A⁻¹ verified ans.
Q.9) If $A = \begin{bmatrix} 1 & tan x \\ -tan x & 1 \end{bmatrix}$ show that A' A⁻¹ = $\begin{bmatrix} cos(2x) & -sin(2x) \\ sin(2x) & cos(2x) \end{bmatrix}$
Sol. $A' = \begin{bmatrix} 1 & tan x \\ tan x & 1 \end{bmatrix}$ have the trans $A^{-1} = \begin{bmatrix} 1 & -tan x \\ sin(2x) & cos(2x) \end{bmatrix}$
Taking LHS A' A⁻¹
= $\begin{bmatrix} 1 & -tan x \\ tan x & 1 \end{bmatrix}$
Taking LHS A' A⁻¹
= $\begin{bmatrix} 1 & -tan x \\ tan x & 1 \end{bmatrix}$
Taking LHS A' A⁻¹
= $\begin{bmatrix} 1 & -tan x \\ 1 & -tan^2x \\ 2 tan x & 1 & -tan^2x \end{bmatrix}$
= $\begin{bmatrix} \frac{1-tan^2x}{1+tan^2x} & \frac{1-tan^2x}{1+tan^2x} \end{bmatrix}$
= $\begin{bmatrix} cos(2x) & -sin(2x) \\ tan x & 1 & 1 \end{bmatrix}$
= $\frac{1}{1+tan^2x} & \frac{1-tan^2x}{1+tan^2x} \end{bmatrix}$
= $\begin{bmatrix} 1 & -tan x \\ 2 tan x & 1 & -tan^2x \end{bmatrix}$
= $\begin{bmatrix} cos(2x) & -sin(2x) \\ sin(2x) & cos(2x) \end{bmatrix}$ = RHS ans.
Q.10) (a) Find area of ABC whose vertices are A(3, 8), B(-4, 2), C(5, -1).
(b) Find equation of line joining A(3, 5) & B(4, 2) using determinants.
(c) Find value of λ so that points $(1, -5), (-4, 7)$ and $(\lambda, 7)$ are collinear.
Sol.10) (a) A(3, 8), B(-4, 2), C(5, -1)
Area of $\Delta ABC = \frac{1}{2}\begin{bmatrix} 3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & -1 & 1 \end{bmatrix}$
 $= \frac{1}{2}[3(2+1) - 8(-4-5) + 1(4-10)]$
 $= \frac{1}{2}[9 + 72 - 6] = \frac{75}{2}$ square units
(b) equation of Ab is given by
 $\begin{vmatrix} x & y & 1 \\ 3 & 5 & 1 \\ 4 & 2 & 1 \end{vmatrix}$
 $\Rightarrow x(5-2) - y(3-4) + 1(6-20) = 0$
 $\Rightarrow 3x + y - 14 = 0$ ans.

(c) since (1, -5), (-4, 5) and $(\lambda, 7)$ are collinear Area of $\Delta = 0$ $\therefore \frac{1}{2} \begin{vmatrix} 1 & -5 & 1 \\ -4 & 5 & 1 \\ \lambda & 7 & 1 \end{vmatrix} = 0$ $\Rightarrow 1(5 - 7) + 5(-4 - \lambda) + 1(-28 - 5\lambda) = 0$ $\Rightarrow -2 - 20 - 5\lambda - 28 - 5\lambda = 0$ $\Rightarrow -10\lambda = -50$ $\lambda = -5$ ans.