1) Find the area enclosed by the parabola $y=\frac{3 x^{2}}{4}$ and the line $3 x-2 y+12=0$.
2) Find the area of the smaller region between the ellipse $9 x^{2}+y^{2}=36$ and the line $\frac{x}{2}+\frac{y}{6}=1$
3) Using integration find the area of region bounded by the triangle whose vertices are $(1,0)$, $(2,2)$ and $(3,1)$.
4) Using the method of integration find the area region bounded by the lines $x+2 y=2, y-x=1$ and $2 x+y=7$.
5) Find the area of the region enclosed between the two circles $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$
6) Find the area of the region bounded by $\left\{(x, y): x^{2} \leq y \leq|x|\right\}$
7) Find the area of the region bounded the curve $y=\sqrt{1-x^{2}}$, line $y=x$ and the positive x -axis.
8) Using integration, find the area of the following region:

$$
\left\{(\mathrm{x}, \mathrm{y}):|x-1| \leq y \leq \sqrt{5-x^{2}}\right\}
$$

9) Find the area of the region bounded the curve $y=4 x-x^{2}$ and the x-axis.
10) Find the area of the region $\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$
11) Find the area of the region $\left\{(x, y): x^{2}+y^{2} \leq 8 x, y^{2} \geq 4 x ; x \geq 0 ; y \geq 0\right\}$
12) Find the area bounded by the curve $y=2 x-x^{2}$ and the line $y=-x$.
13) Find the area bounded by the curves $y=6 x-x^{2}$ and $y=x^{2}-2 x$.
14) Find the area bounded by the line $x=0, x=2$ and the curves $y=2^{x}, y=2 x-x^{2}$.
