CLASS XII

APPLICATION OF DERIVATIVES

1. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{sec}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand-cone increasing when the height is 4 cm ?
2. Water is dripping out from a conical funnel at a uniform rate of $4 \mathrm{~cm}^{3} / \mathrm{sec}$ through a tiny hole at the vertex in the bottom. When the slant height of the water is 3 cm , find the rate of decrease of the slant height of the water cone. Given that the vertical angle of the funnel is 120°.
3. Find the points on the curve $y=x^{3}-11 x+5$ at which the tangent has the equation $y=x-1$
4. Find the equations of the tangent and normal to the curve $\mathrm{y}=\frac{x-7}{(x-2)(x-3)}$ at the point, where it cuts x -axis.
5. Find the points on the curve $9 y^{2}=x^{3}$ where the normal to curve makes equal intercepts with the axes.
6. Using differentials, find the approximate value of the following up to 3 places of decimals.
a) $3.968^{3 / 2}$
b) $\frac{1}{\sqrt{25.1}}$
7. Find the approximate value of $f(5.001)$, where $f(x)=x^{3}-7 x^{2}+15$.
8. If the radius of a sphere is measured as 9 m with an error of 0.03 m , then find the approximate error in calculating its surface area.
9. Find the intervals in which the functions given below are strictly decreasing or strictly increasing:-
a) $\mathrm{f}(\mathrm{x})=\frac{3}{10} x^{4}-\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5} \mathrm{x}+11$
b) $f(x)=x^{4}-\frac{x^{3}}{3}$
10. Find the Intervalsin which the function f given by

$$
f(x)=\sin x+\cos x, 0 \leq x \leq 2 \pi, \text { is increasing or decreasing. }
$$

11. An open box with a square base is to be made out of a given quantity of metal sheet of area c .

Show that the maximum volume of the box is $\frac{C^{3}}{6 \sqrt{3}}$.
12. Manufacturer can sell x items at a price of rupees $\left(5-\frac{x}{100}\right)$ each. The cost price of x items is Rs $\left(\frac{x}{5}+500\right)$. Find the number of items he should sell to earn maximum profit.
13. A point on the hypotenuse of a right angled triangle is at distance a and b from the sides. Show that the length of the hypotenuse is at least $\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{3 / 2}$.
14. The length of the sides of an isosceles triangle are $9+x^{2}, 9+x^{2}$ and $18-2 x^{2}$ units. Calculate the value of x which makes the area maximum. Also find the maximum area of the triangle.
15.A window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m , find the dimensions of the rectangle that will produce the largest area of the window.
16. An Apache helicopter of enemy is flying along the curve given by $y=x^{2}+7$.A soldier placed at $(3,7)$ wants to shoot down the helicopter when it is nearest to him.

