ΧI	Chemist	rv W	nrksl	heet
ΔI	CHEITHS	.ıy vv	וכא וטי	ICCL

Time: 30 min	Ch#5 : States of Matter -03	Full Marks: 20

ı	n	S	t	r	u	C	t	i	O	r	าร	:

- 1. All questions are compulsory.
- 2. Please give the explanation for the answer where applicable.
- Q1 Write the van der Waal equation for real gases.

 (1 Mark)
- Q2 What type of graph will you get when PV is plotted against P at constant temperature?

(1 Mark)

Q3 - What is the S.I. unit of viscosity coefficient?

(1 Mark)

Q4 - What is the difference between normal boiling point and standard boiling point?

(2 Marks)

Q5 - Define-

- (a)Critical temperature
- (b)Critical pressure

(2 Marks)

Q6 - Why falling liquid drops are spherical?

(2 Marks)

Q7 - What is the significance of van der Waals parameters?

(2 Marks)

Q8 - A 2-L flask contains 1.6g of methane and 0.5g of hydrogen at 27° C. Calculate the partial pressure of each gas in the mixture and the total pressure.

(3 Marks)

Q9 - A sealed tube which can withstand a pressure of 3 atmosphere is filled with air at 27^{0} C and 760 mm pressure. Find the temperature above which it will burst.

(3 Marks)

Q10 - Calculate the pressure exerted by 1 mol of CO_2 at 273 K if the van der Waal's constant 'a' = 3.592 dm⁶atm mol-. Assume that the volume occupied by CO_2 molecules is negligible.

(3 Marks)