Topics:- Trigonometry \& Similar Triangles

Q1: If $\tan A=\sqrt{2}-1$, show that $\sin A \cos A=\frac{\sqrt{2}}{4}$
Q2: Evaluate $1-\sin ^{2} \sin ^{2} 30^{\circ} \cos ^{2} 45^{\circ}+4 \tan ^{2} 30^{\circ}+1 / 2 \sin ^{2} 90^{\circ}-2 \cos ^{2} 90^{\circ}+\frac{1}{24} \cos ^{2} 0^{\circ}$
Q3: P.T $\frac{\cos (90-\theta) \sec (90-\theta) \tan \theta}{\operatorname{cosec}(90-\theta) \sin (90-\theta) \cot (90-\theta)}+\frac{\tan (90-\theta)}{\cot \theta}=2$
Q4: $\sec ^{4} \theta-\sec ^{2} \theta=\tan ^{4} \theta+\tan ^{2} \theta$
Q5: $\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2}} \theta=\tan \theta+\cot \theta$
Q6: Through the midpoint m of the side CD of a parallelogram ABCD , the line BM is drawn intersecting AC in L and AD produced in E . Prove that $\mathrm{EL}=2 \mathrm{BL}$.

Q7: If two triangles are equiangular, prove that the ratio of the corresponding side is same as the ratio of corresponding altitudes .

Q8: ABC is a right Δ at C . let $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}$ and $\mathrm{AB}=\mathrm{c}$, and let ' P ' be the perpendicular from C and AB . Prove that (i) $\mathrm{pc}=\mathrm{ab} \quad$ (ii) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

Q9: In an equilateral Δ with side ' a ' prove that a) Altitude $=\frac{\sqrt[a]{3}}{2}$ b) Area $=\frac{\sqrt{3}}{4} a^{2}$
Q10: A man goes 15 m due west and 8 m due north. How far is he from the starting point .

