SAMPLE QUESTION PAPER

BLUE PRINT

Time Allowed: 2 hours

Maximum Marks: 40

S. No.		Unit / Chapter	Section-A (2 marks)	Section-B (3 marks)	Section-C (4 marks)	Total
1.	Unit-III	Integrals	2(4)	-	-	7(18)
2.		Application of Integrals	1(2)	_	1(4)	
3.		Differential Equations	2(4)#	_	1(4)	
4.	Unit-IV	Vector Algebra	_	1(3)	1(4)*	4(14)
5.		Three Dimensional Geometry	. = 17	1(3)*	1(4)	
6.	Unit-VI	Probability	1(2)	2(6)#	_	3(8)
	Ē	Total Questions	6(12)	4(12)	4(16)	14(40)

^{*}It is a choice based question.

Out of the two or more questions only one question is choice based.

MATHEMATICS

Time Allowed: 2 hours

Maximum Marks: 40

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 6 short answer type (SA1) questions of 2 marks each.
- 3. Section B has 4 short answer type (SA2) questions of 3 marks each.
- 4. Section C has 4 long answer type questions (LA) of 4 marks each.
- 5. There is an internal choice in some of the questions.
- 6. Q14 is a case-based problem having 2 sub parts of 2 marks each.

SECTION - A

- 1. Find $\int \frac{10x^9 + 10^x \log_e 10}{10^x + x^{10}} dx$.
- 2. Show that $y = be^x + ce^{2x}$ is a solution of the differential equation $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0$.
- **3.** Find the area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3.
- 4. Evaluate: $\int (2\tan x 3\cot x)^2 dx$
- 5. Determine the order and degree respectively, if defined, of the following differential equations.

$$5x\left(\frac{dy}{dx}\right)^2 - \frac{d^2y}{dx^2} - 6y = \log x.$$

OR

Write the integrating factor of the differential equation $\frac{dy}{dx} + y \tan x - \sec x = 0$.

6. A problem in mathematics is given to 3 students whose chances of solving it are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$. What is the probability that the problem is solved?

SECTION - B

- 7. A bag contains 5 white, 7 red and 8 black balls. If four balls are drawn one by one without replacement, then find the probability of getting all white balls.
- 8. Find the shortest distance between the lines l_1 and l_2 whose vector equations are $\vec{r} = \hat{i} + \hat{j} + \lambda(2\hat{i} \hat{j} + \hat{k})$ and $\vec{r} = 2\hat{i} + \hat{j} \hat{k} + \mu(3\hat{i} 5\hat{j} + 2\hat{k})$.

Find the equation of the plane passing through the line of intersection of the planes 2x + y - z = 3, 5x - 3y + 4z + 9 = 0 and parallel to the line $\frac{x-1}{2} = \frac{y-3}{4} = \frac{z-5}{5}$.

9. If
$$P(A) = \frac{3}{8}$$
, $P(B) = \frac{1}{2}$ and $P(A \cap B) = \frac{1}{4}$, then find $P(\overline{A} \mid \overline{B})$ and $P(\overline{B} \mid \overline{A})$.

OR

Two dice are rolled. Let A, B, C be the events of getting a sum of 2, a sum of 3 and a sum of 4 respectively. Then, show that

- (i) A is a simple event
- (ii) B and C are compound events
- (iii) A and B are mutually exclusive events.
- 10. Find the angle between two vectors \vec{a} and \vec{b} having the same length $\sqrt{2}$ and their scalar product is -1.

SECTION - C

- 11. Find the value of p for which the vectors $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are
 - (i) perpendicular
- (ii) parallel

OR

Define $\vec{a} \times \vec{b}$ and prove that $|\vec{a} \times \vec{b}| = (\vec{a} \cdot \vec{b}) \tan \theta$, where θ is angle between \vec{a} and \vec{b} .

- 12. Find the area of triangle whose two vertices formed from the x-axis and line y = 3 |x|.
- 13. Find the distance of the point (3, 4, 5) from the plane x + y + z = 2 measured parallel to the line 2x = y = z.

CASE-BASED/DATA-BASED

14. If an equation is of the form $\frac{dy}{dx} + Py = Q$, where P, Q are functions of x, then such equation is known as linear differential equation. Its solution is given by $y \cdot (I.F.) = \int Q \cdot (I.F.) dx + c$, where $I.F. = e^{\int P dx}$.

Now, suppose the given equation is $(1 + \sin x) \frac{dy}{dx} + y \cos x + x = 0$.

Based on the above information, answer the following questions.

- (i) Find the value of I.F..
- (ii) Find the solution of the given differential equation.