## < SOLUTIONS >

1. Let 
$$I = \int \frac{10x^9 + 10^x \log_e 10}{10^x + x^{10}} dx$$

Put 
$$10^x + x^{10} = t$$

$$\Rightarrow (10^x \log_e 10 + 10x^9) dx = dt$$

$$\therefore I = \int \frac{10x^9 + 10^x \log_e 10}{10^x + x^{10}} dx = \int \frac{dt}{t}$$

$$= \log_c t + C = \log_c (10^x + x^{10}) + C$$

2. We have, 
$$y = be^x + ce^{2x}$$
 ...(i)

Differentiating (i) with respect to x, we get

$$\frac{dy}{dx} = be^x + 2ce^{2x} \qquad \dots (ii)$$

Again differentiating (ii) with respect to x, we get

$$\frac{d^2y}{dx^2} = be^x + 4ce^{2x}$$

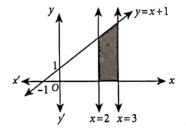
$$\therefore \frac{d^2y}{dx^2} - \frac{3dy}{dx} + 2y$$

$$=be^{x}+4ce^{2x}-3(be^{x}+2ce^{2x})+2(be^{x}+ce^{2x})$$

$$= be^{x} + 4ce^{2x} - 3be^{x} - 6ce^{2x} + 2be^{x} + 2ce^{2x} = 0$$

So,  $y = be^x + ce^{2x}$  satisfies the given differential equation. Hence, it is a solution of the given differential equation.

3. We have, y = x + 1, which is a straight line



:. Required area

$$= \int_{2}^{3} (x+1) dx = \left[ \frac{x^2}{2} + x \right]_{2}^{3} = \left( \frac{9}{2} + 3 \right) - \left( \frac{4}{2} + 2 \right)$$

$$=\frac{15}{2}-4=\frac{7}{2}$$
 sq. units

4. Let 
$$I = \int (2 \tan x - 3 \cot x)^2 dx$$

$$\Rightarrow I = \int (4\tan^2 x + 9\cot^2 x - 12\tan x \cot x)dx$$

$$\Rightarrow I = \int \left\{ 4(\sec^2 x - 1) + 9(\csc^2 x - 1) - 12 \right\} dx$$

$$\Rightarrow I = \int (4\sec^2 x + 9\csc^2 x - 25)dx$$

$$\Rightarrow I = 4 \tan x - 9 \cot x - 25x + C$$

5. We have, 
$$5x \left(\frac{dy}{dx}\right)^2 - \frac{d^2y}{dx^2} - 6y = \log x$$
.

Highest order derivative is  $\frac{d^2y}{dx^2}$ , so order is 2.

Now, given differential equation is polynomial in differential coefficients and power of  $\frac{d^2y}{dx^2}$  is one, so degree is 1.

## OR

The given differential equation is

$$\frac{dy}{dx} + y \tan x - \sec x = 0$$

It is a linear differential equation.

$$\therefore$$
 I.F. =  $e^{\int \tan x \, dx} = e^{\log \sec x} = \sec x$ 

**6.** Let A, B, C be the respective events of solving the

problem. Then, 
$$P(A) = \frac{1}{2}$$
,  $P(B) = \frac{1}{3}$  and  $P(C) = \frac{1}{4}$ .

Clearly *A*, *B*, *C* are independent events and the problem is solved if at least one student solves it.

$$\therefore$$
 Required probability =  $P(A \cup B \cup C)$ 

$$=1-P(\overline{A})P(\overline{B})P(\overline{C})$$

$$=1-\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)=1-\frac{1}{4}=\frac{3}{4}$$

7. Let A, B, C, D denote events of getting a white ball in first, second, third and fourth draw respectively. Required probability =  $P(A \cap B \cap C \cap D)$ 

$$= P(A)P(B \mid A)P(C \mid A \cap B)P(D \mid A \cap B \cap C) \dots (i)$$

Now, 
$$P(A) = \frac{5}{20} = \frac{1}{4}$$
.

When a white ball is drawn in the first draw, there are 19 balls left in the bag out of which 4 are white.

$$\therefore P(B \mid A) = \frac{4}{19}$$

Since the ball drawn is not replaced, therefore after drawing a white ball in second draw there are 18 balls left in the bag out which 3 are white.

$$\therefore P(C \mid A \cap B) = \frac{3}{18} = \frac{1}{6}$$

After drawing a white ball in third draw, there are 17 balls left in the bag, out of which 2 are white.

$$\therefore P(D \mid A \cap B \cap C) = \frac{2}{17}$$

∴ Required probability = 
$$\frac{1}{4} \times \frac{4}{19} \times \frac{1}{6} \times \frac{2}{17} = \frac{1}{969}$$

8. We have, 
$$\vec{r} = \hat{i} + \hat{j} + \lambda(2\hat{i} - \hat{j} + \hat{k})$$
 ...(i)

and 
$$\vec{r} = 2\hat{i} + \hat{j} - \check{k} + \mu(3\hat{i} - 5\hat{j} + 2\hat{k})$$
 ...(ii)

Here, 
$$\vec{a}_1 = \hat{i} + \hat{j}$$
,  $\vec{b}_1 = 2\hat{i} - \hat{j} + \hat{k}$ ,

$$\vec{a}_2 = 2\hat{i} + \hat{j} - \hat{k}, \ \vec{b}_2 = 3\hat{i} - 5\hat{j} + 2\hat{k}$$

Therefore, 
$$\vec{a}_2 - \vec{a}_1 = (2\hat{i} + \hat{j} - \hat{k}) - (\hat{i} + \hat{j}) = \hat{i} - \hat{k}$$

$$\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & -5 & 2 \end{vmatrix} = (-2 + 5)\hat{i} - (4 - 3)\hat{j} + (-10 + 3)\hat{k}$$

$$\Rightarrow \vec{b}_1 \times \vec{b}_2 = 3\hat{i} - \hat{j} - 7\hat{k}$$

So, 
$$|\vec{b}_1 \times \vec{b}_2| = \sqrt{(3)^2 + (-1)^2 + (-7)^2} = \sqrt{9 + 1 + 49}$$
  
=  $\sqrt{59}$ 

Hence, the shortest distance between two given lines be

$$d = \left| \frac{(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2)}{|\vec{b}_1 \times \vec{b}_2|} \right| = \left| \frac{(\hat{i} - \hat{k}) \cdot (3\hat{i} - \hat{j} - 7\hat{k})}{\sqrt{59}} \right|$$

$$\Rightarrow d = \frac{3 - 0 + 7}{\sqrt{59}} = \frac{10}{\sqrt{59}}$$
 units

## OR

The equation of the plane passing through the line of intersection of the planes 2x + y - z = 3 and 5x - 3y + 4z + 9 = 0 is

$$(2x + y - z - 3) + \lambda(5x - 3y + 4z + 9) = 0$$

$$\Rightarrow x(2+5\lambda) + y(1-3\lambda) + z(4\lambda - 1) + 9\lambda - 3 = 0 ...(i)$$

The plane (i) is parallel to the line

$$\frac{x-1}{2} = \frac{y-3}{4} = \frac{z-5}{5}$$

$$\therefore 2(2+5\lambda) + 4(1-3\lambda) + 5(4\lambda - 1) = 0$$

$$\Rightarrow 18\lambda + 3 = 0 \Rightarrow \lambda = -\frac{1}{6}$$

Putting the value of  $\lambda$  in (i), we obtain

$$x\left(2 - \frac{5}{6}\right) + y\left(1 + \frac{3}{6}\right) + z\left(-\frac{4}{6} - 1\right) - \frac{9}{6} - 3 = 0$$

 $\Rightarrow$  7x + 9y - 10z - 27 = 0, which is the equation of the required plane.

9. We have, 
$$P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B})$$

$$\Rightarrow P(\overline{A} \cap \overline{B}) = 1 - P(A \cup B)$$

$$\Rightarrow P(\overline{A} \cap \overline{B}) = 1 - \{P(A) + P(B) - P(A \cap B)\}\$$

$$\Rightarrow P(\overline{A} \cap \overline{B}) = 1 - \left\{ \frac{3}{8} + \frac{1}{2} - \frac{1}{4} \right\} = \frac{3}{8}$$

Now, 
$$P(\overline{A}) = 1 - P(A) = \frac{5}{8}$$
 and  $P(\overline{B}) = 1 - P(B) = \frac{1}{2}$ 

$$\therefore P(\overline{A} \mid \overline{B}) = \frac{P(\overline{A} \cap \overline{B})}{P(\overline{B})} = \frac{\frac{3}{8}}{\frac{1}{2}} = \frac{3}{4}$$

and 
$$P(\overline{B}|\overline{A}) = \frac{P(\overline{A} \cap \overline{B})}{P(\overline{A})} = \frac{\frac{3}{8}}{\frac{5}{8}} = \frac{3}{5}$$

## OR

We have,  $A = \{(1, 1)\}, B = \{(1, 2), (2, 1)\}$ and  $C = \{(1, 3), (3, 1), (2, 2)\}$ 

- (i) Since A consists of a single sample point, it is a simple event.
- (ii) Since both *B* and *C* contain more than one sample point, therefore each one of them is a compound event.

(iii) Since  $A \cap B = \emptyset$ .

- ∴ A and B are mutually exclusive events.
- **10.** Let  $\theta$  be the angle between vectors  $\vec{a}$  and  $\vec{b}$ .

We have,  $|\vec{a}| = |\vec{b}| = \sqrt{2}$  and  $\vec{a} \cdot \vec{b} = -1$ 

$$\therefore \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

$$\Rightarrow \cos \theta = \frac{-1}{\sqrt{2} \times \sqrt{2}} = -\frac{1}{2}$$

$$\Rightarrow \cos \theta = \cos \frac{2\pi}{3} \qquad [\because 0 \le \theta \le \pi]$$

$$\Rightarrow \theta = \frac{2\pi}{3}$$

Hence, the angle between  $\vec{a}$  and  $\vec{b}$  is  $\frac{2\pi}{3}$ .

11. (i) If vectors  $\vec{a}$  and  $\vec{b}$  are perpendicular, then  $\vec{a} \cdot \vec{b} = 0$ 

$$\Rightarrow (3\hat{i} + 2\hat{j} + 9\hat{k}) \cdot (\hat{i} + p\hat{j} + 3\hat{k}) = 0$$

$$\Rightarrow 3 + 2p + 27 = 0 \Rightarrow p = -15$$

(ii) We know that, the vectors  $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$  and  $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$  are parallel iff  $\vec{a} = \lambda \vec{b}$ 

$$\Leftrightarrow (a_1\hat{i} + a_2\hat{j} + a_3\hat{k}) = \lambda (b_1\hat{i} + b_2\hat{j} + b_3\hat{k})$$

$$\Leftrightarrow a_1 = \lambda b_1, a_2 = \lambda b_2, a_3 = \lambda b_3$$

$$\Leftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = \lambda$$

So, given vectors  $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$  and  $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$  will be parallel iff

$$\frac{3}{1} = \frac{2}{p} = \frac{9}{3} \implies 3 = \frac{2}{p} \implies p = \frac{2}{3}$$
OR

 $\vec{a} \times \vec{b}$  is defined as  $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ where,  $\theta$  is the angle between  $\vec{a}$  and  $\vec{b}$ ,  $0 \le \theta \le \pi$  and  $\hat{n}$  is a unit vector perpendicular to both  $\vec{a}$  and  $\vec{b}$ , such that  $\vec{a}$ ,  $\vec{b}$  and  $\hat{n}$  form a right handed system.

We know that, 
$$|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$$
 ...(i)

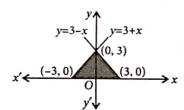
and 
$$|\vec{a} \cdot \vec{b}| = |\vec{a}| |\vec{b}| \cos \theta$$
 ... (ii)

Dividing (i) by (ii), we get

$$\frac{|\vec{a} \times \vec{b}|}{|\vec{a} \cdot \vec{b}|} = \frac{|\vec{a}| |\vec{b}| \sin \theta}{|\vec{a}| |\vec{b}| \cos \theta} \implies |\vec{a} \times \vec{b}| = |\vec{a} \cdot \vec{b}| \tan \theta$$

12. We have, 
$$y = 3 - |x|$$
  
 $\Rightarrow y = 3 + x, \forall x < 0$  ...(i)  
and  $y = 3 - x, \forall x \ge 0$  ...(ii)

:. Required area = area of shaded region

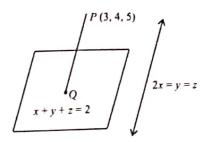


$$= \left| 2 \int_{-3}^{0} (3+x) dx \right| = \left| 2 \left[ 3x + \frac{x^2}{2} \right]_{-3}^{0} \right|$$
$$= \left| -2 \left[ -9 + \frac{9}{2} \right] \right|$$
$$= \left| -2 \times \frac{-9}{2} \right| = 9 \text{ sq. units}$$

13. We have equation of line as 2x = y = z

or 
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{2}$$

Now, equation of line through the point P(3, 4, 5) and parallel to the given line is



$$\frac{x-3}{1} = \frac{y-4}{2} = \frac{z-5}{2} = \lambda$$

Coordinates of any point Q on this line are

$$(\lambda + 3, 2\lambda + 4, 2\lambda + 5)$$

Since this point must lie on the plane x + y + z = 2

$$\lambda + 3 + 2\lambda + 4 + 2\lambda + 5 = 2$$

$$\Rightarrow$$
 5 $\lambda$  + 12 = 2  $\Rightarrow$   $\lambda$  = -2

 $\therefore$  The coordinates of the point Q are (1, 0, 1).

$$PQ = \sqrt{(3-1)^2 + (4-0)^2 + (5-1)^2}$$
$$= \sqrt{4+16+16} = 6$$

Hence, required distance of the point from the plane is 6 units.

14. (i) The given differential equation is

$$(1+\sin x)\frac{dy}{dx} + y\cos x + x = 0.$$

$$\Rightarrow \frac{dy}{dx} + \frac{y\cos x}{1+\sin x} = \frac{-x}{1+\sin x}$$

I.F. = 
$$e^{\int Pdx} = e^{\int \frac{\cos x}{1 + \sin x} dx}$$

Put  $1 + \sin x = t \Rightarrow \cos x \, dx = dt$ 

$$\therefore \text{ I.F.} = e^{\int_{t}^{1} dt} = e^{\log t} = t = 1 + \sin x$$

(ii) Solution of given differential equation is given by

$$y.(I.F.) = \int Q (I.F.) dx + c$$

$$\Rightarrow y(1+\sin x) = \int \frac{-x}{1+\sin x} \cdot (1+\sin x) \, dx + c$$

$$\Rightarrow y(1+\sin x) = \frac{-x^2}{2} + c$$