SAMPLE QUESTION PAPER

BLUE PRINT

Time Allowed: 2 hours

Maximum Marks : 40

S. No.	Unit / Chapter		Section-A (2 marks)	Section-B (3 marks)	Section-C (4 marks)	Total
1.	Unit-III	Integrals	1(2)	1(3)	_	7(18)
2.		Application of Integrals	1(2)	1(3)*	_	
3.		Differential Equations	2(4)	_	1(4)	
4.	Unit-IV	Vector Algebra	_	1(3)	1(4)*	4(14)
5.		Three Dimensional Geometry	_	1(3)*	1(4)	
6.	Unit-VI	Probability	2(4)#	^	1(4)	3(8)
		Total Questions	6(12)	4(12)	4(16)	14(40)

^{*}It is a choice based question.

^{*}Out of the two or more questions only one question is choice based.

MATHEMATICS

Time Allowed: 2 hours Maximum Marks: 40

General Instructions:

1. This question paper contains three sections - A, B and C. Each part is compulsory.

- 2. Section A has 6 short answer type (SA1) questions of 2 marks each.
- 3. Section B has 4 short answer type (SA2) questions of 3 marks each.
- 4. Section C has 4 long answer type questions (LA) of 4 marks each.
- 5. There is an internal choice in some of the questions.
- 6. Q14 is a case-based problem having 2 sub parts of 2 marks each.

SECTION - A

- 1. Find the integrating factor of the differential equation $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1$.
- 2. If A and B are two events associated with the same random experiment such that $P(A \cup B) = \frac{3}{4}$, $P(A \cap B) = \frac{1}{4}$ and $P(\overline{A}) = \frac{2}{3}$, then find P(B).
- 3. Find: $\int_{-\frac{\pi}{4}}^{0} \frac{1+\tan x}{1-\tan x} dx$
- 4. If $P(A) = \frac{2}{5}$, $P(B) = \frac{3}{10}$ and $P(A \cap B) = \frac{1}{5}$, then find the value of $P(A' \mid B')$.

OR

Let A and B be independent events with P(A) = 1/4 and $P(A \cup B) = 2P(B) - P(A)$. Find P(B).

- 5. Find the order and the degree of the differential equation $x^2 \frac{d^2 y}{dx^2} = \left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^4$.
- 6. Find the area of the ellipse $\frac{x^2}{4^2} + \frac{y^2}{9^2} = 1$.

SECTION - B

- 7. Evaluate: $\int \frac{5x+3}{\sqrt{x^2+4x+10}} dx$
- 8. Find a unit vector perpendicular to both of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$, where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.
- 9. Find the direction cosines of the line $\frac{x+2}{2} = \frac{2y-7}{6} = \frac{5-z}{6}$. Also, find the vector equation of the line through the point A(-1, 2, 3) and parallel to the given line.

Find the equation of the plane passing through the points (-1, 2, 0), (2, 2, -1) and parallel to the line $\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}.$

10. Find the area of the region bounded by the curve x = 2y + 3 and the lines y = 1 and y = -1.

OR

If the area bounded the curve $y^2 = 16x$ and line y = mx is $\frac{2}{3}$, then find the value of m.

SECTION - C

- 11. Assume that the chances of a patient having a heart attack is 40%. Assuming that a meditation and yoga course reduces the risk of heart attack by 30% and prescription of certain drug reduces its chance by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options, the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga.
- 12. If $\vec{a} = 3\hat{i} \hat{j}$ and $\vec{b} = 2\hat{i} + \hat{j} 3\hat{k}$ then express \vec{b} in the form $\vec{b} = \vec{b_1} + \vec{b_2}$ where $\vec{b_1} \mid \mid \vec{a}$ and $\vec{b_2} \perp \vec{a}$.

OR

If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 6\hat{j} - \hat{k}$ respectively are the position vectors of points A, B, C and D, then find the angle between the straight lines AB and CD. Find whether \overrightarrow{AB} and \overrightarrow{CD} are collinear or not.

13. Find the coordinates of the foot of perpendicular and the length of the perpendicular drawn from the point P(5, 4, 2) to the line, $\vec{r} = -\hat{i} + 3\hat{j} + \hat{k} + \lambda(2\hat{i} + 3\hat{j} - \hat{k})$. Also find the image of P in this line.

CASE-BASED/DATA-BASED

14. If the equation is of the form $\frac{dy}{dx} = \frac{f(x,y)}{g(x,y)}$ or $\frac{dy}{dx} = F\left(\frac{y}{x}\right)$, where f(x,y), g(x,y) are homogeneous functions of the same degree in x and y, then put y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$, so that the dependent variable y is changed to another variable v and then apply variable separable method.

Based on the above information, answer the following questions.

- (i) Find the general solution of $x^2 \frac{dy}{dx} = x^2 + xy + y^2$.
- (ii) Find the solution of the differential equation $2xy\frac{dy}{dx} = x^2 + 3y^2$.