

CLASS: XIIth DATE:

SUBJECT: MATHS

DPP NO.: 1

1.	Let $A =$	$\{x: -1 \le x \le 1\}$ and $f: A \rightarrow A$ such that $f(x) = x x $, then f is
	3 A 1	

- a) A bijection
- b) Injective but not surjective
- c) Surjective but not injective
- d) Neither injective nor surjective

2.	The domain of the	function $\sin^{-}\left(\log_2\frac{x^2}{2}\right)$ is		
	a) [1 2] (0)	b)[2 2](1 1)	a) [2 2] (A)	

- a) [-1, 2]-{0}
- b) [-2, 2]-(-1, 1)
- c) [-2, 2]-{0}
- d)[1, 2]

3. If
$$f(x) = ax + b$$
 and $g(x) = cx + d$, then $f(g(x)) = g(f(x))$ is equivalent to

- a) f(a) = f(c)
- b) f(b) = g(b)
- c) f(d) = g(b)
- d) f(c) = g(a)

4. The period of the function
$$f(x) = \sin^4 3x + \cos^4 3x$$
 is

- a) $\pi/2$
- b) $\pi/3$

d) None of these

5. Given
$$f(x) = \log_{10}\left(\frac{1+x}{1-x}\right)$$
 and $g(x) = \frac{3x+x^3}{1+3x^2}$, then $f \circ g(x)$ equals

- a) -f(x)
- b) 3 f(x)
- c) $[f(x)]^3$
- d) None of these

- a) $f(x) = |x + 1|, x \in [-1, \infty)$
- b) $g(x) = x + \frac{1}{x}, x \in (0, \infty)$
- c) $h(x) = x^2 + 4x 5, x \in (0, \infty)$
- d) $h(x) = e^{-x}, x \in [0, \infty)$

7. If
$$f:R \to R$$
 and $g:R \to R$ are defined by $f(x) = x - [x]$ and $g(x) = [x]$ for $x \in R$, where $[x]$ is the greatest integer not exceeding x , then for every $x \in R$, $f(g(x))$ is equal to

a) x

b)0

- c) f(x)
- d)g(x)

8. The domain of definition of
$$f(x) = \sqrt{\frac{\log_{0.3}|x-2|}{|x|}}$$
, is

- a) $[1, 2) \cup (2, 3]$
- b) [1, 3]
- c) R (1, 3]
- d) None of these

9.
$$f:R\rightarrow R$$
 given by $f(x) = 5 - 3\sin x$, is

- a) One-one
- b) Onto
- c) One-one and onto
- d) None of these

10.	If $f(x + 2y, x - 2y) = xy$, then $f(x,y)$ equals								
	a) $\frac{x^2 - y^2}{8}$	$b)\frac{x^2-y^2}{4}$	c) $\frac{x^2+y^2}{4}$	$\mathrm{d})\frac{x^2-y^2}{2}$					
11.	If $f:R \to R$ is defined as f a) $(1-x)^{-1/3}$	$f(x) = (1 - x)^{1/3}$, then $f(x) = (1 - x)^3$	$x^{-1}(x)$ is c) $1 - x^3$	d) $1 - x^{1/3}$					
12.	If $f(x + 2y,x,x - 2y) =$ $a) \frac{x^2 - y^2}{8}$	xy, then $f(x, y)$ equals b) $\frac{x^2 - y^2}{4}$	c) $\frac{x^2 + y^2}{4}$	$d)\frac{x^2-y^2}{2}$					
13.	Let $f:[4, \infty[\to [4, \infty[$ be a) $2 - \sqrt{4 + \log_5 x}$	defined by $f(x) = 5^{x(x-x)}$ b) $2 + \sqrt{4 + \log_5 x}$	then $f^{-1}(x)$ c) $(\frac{1}{5})^{x(x-4)}$	d) Not defined					
14.			hen the range $f(x)$ is conc) [35, 50]	ntained in the interval d) [-12, 12]					
15.	The period of $\sin^2\theta$, is a) π^2	b) π	c) 2 π	$d)\pi/2$					
16.	5. If $n \in N$, and the period of $\frac{\cos nx}{\sin(\frac{x}{n})}$ is 4π , then n is equal to								
	a) 4	b)3	c) 2	d) 1					
17.	Foe real x , let $f(x) = x^3$ a) f is one-one but not c) f is one-one and onto	onto R	b) <i>f</i> is onto <i>R</i> but not one-one d) <i>f</i> is neither one-one nor onto <i>R</i>						
18.	The range of the function a $[-1/3, 0]$		c) [1/3, 1]	d) None of these					
19. Let $A = \{2, 3, 4, 5,, 16, 17, 18\}$. Let be the equivalence relation on $A \times A$, cartesian product of A and A , defined by $(a, b) \approx (c, d)$ if $ad = bc$, then the number of ordered pairs of the equivalence class of $(3, 2)$ is									
	a) 4	b)5	c) 6	d)7					
20.		mber. Then, the range of b) {1, 2, 3, 4, 5, 6}	f the function $f(n) = 8 - c$ c) $\{1, 2, 3\}$	$n_{P_n-4}, 4 \le n \le 6$, is d) $\{1, 2, 3, 4, 5\}$					