CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :- RELATIONS AND FUNCTIONS

1. Let $A=\{x:-1 \leq x \leq 1\}$ and $f: A \rightarrow A$ such that $f(x)=x|x|$, then f is
a) A bijection
b) Injective but not surjective
c) Surjective but not injective
d) Neither injective nor surjective
2. The domain of the function $\sin ^{-}\left(\log _{2} \frac{x^{2}}{2}\right)$ is
a) $[-1,2]-\{0\}$
b) $[-2,2]-(-1,1)$
c) $[-2,2]-\{0\}$
d) $[1,2]$
3. If $f(x)=a x+b$ and $g(x)=c x+d$, then $f\{g(x)\}=g\{f(x)\}$ is equivalent to
a) $f(a)=f(c)$
b) $f(b)=g(b)$
c) $f(d)=g(b)$
d) $f(c)=g(a)$
4. The period of the function $f(x)=\sin ^{4} 3 x+\cos ^{4} 3 x$ is
a) $\pi / 2$
b) $\pi / 3$
c) $\pi / 6$
d) None of these
5. Given $f(x)=\log _{10}\left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$, then $f o g(x)$ equals
a) $-f(x)$
b) $3 f(x)$
c) $[f(x)]^{3}$
d) None of these
6. Which of the following functions is not an are not an injective map(s)?
a) $f(x)=|x+1|, x \in[-1, \infty)$
b) $g(x)=x+\frac{1}{x^{2}}, x \in(0, \infty)$
c) $h(x)=x^{2}+4 x-5, x \in(0, \infty)$
d) $h(x)=e^{-x}, x \in[0, \infty)$
7. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=x-[x]$ and $g(x)=[x]$ for $x \in R$, where $[x]$ is the greatest integer not exceeding x, then for every $x \in R, f(g(x))$ is equal to
a) x
b) 0
c) $f(x)$
d) $g(x)$
8. The domain of definition of $f(x)=\sqrt{\frac{\log _{0.3}|x-2|}{|x|}}$, is
a) $[1,2) \cup(2,3]$
b) $[1,3]$
c) $R-(1,3]$
d) None of these
9. $f: R \rightarrow R$ given by $f(x)=5-3 \sin x$, is
a) One-one
b) Onto
c) One-one and onto
d) None of these
10. If $f(x+2 y, x-2 y)=x y$, then $f(x, y)$ equals
a) $\frac{x^{2}-y^{2}}{8}$
b) $\frac{x^{2}-y^{2}}{4}$
c) $\frac{x^{2}+y^{2}}{4}$
d) $\frac{x^{2}-y^{2}}{2}$
11. If $f: R \rightarrow R$ is defined as $f(x)=(1-x)^{1 / 3}$, then $f^{-1}(x)$ is
a) $(1-x)^{-1 / 3}$
b) $(1-x)^{3}$
c) $1-x^{3}$
d) $1-x^{1 / 3}$
12. If $f(x+2 y, x, x-2 y)=x y$, then $f(x, y)$ equals
a) $\frac{x^{2}-y^{2}}{8}$
b) $\frac{x^{2}-y^{2}}{4}$
c) $\frac{x^{2}+y^{2}}{4}$
d) $\frac{x^{2}-y^{2}}{2}$
13. Let $f:\left[4, \infty\left[\rightarrow\left[4, \infty\left[\right.\right.\right.\right.$ be defined by $f(x)=5^{x(x-4)}$ then $f^{-1}(x)$
a) $2-\sqrt{4+\log _{5} x}$
b) $2+\sqrt{4+\log _{5} x}$
c) $\left(\frac{1}{5}\right)^{x(x-4)}$
d) Not defined
14. If $f:[2,3] \rightarrow R$ is defined by $f(x)=x^{3}+3 x-2$, then the range $f(x)$ is contained in the interval
a) $[1,12]$
b) $[12,34]$
c) $[35,50]$
d) $[-12,12]$
15. The period of $\sin ^{2} \theta$, is
a) π^{2}
b) π
c) 2π
d) $\pi / 2$
16. If $n \in N$, and the period of $\frac{\cos n x}{\sin \left(\frac{x}{n}\right)}$ is 4π, then n is equal to
a) 4
b) 3
c) 2
d) 1
17. Foe real x, let $f(x)=x^{3}+5 x+1$, then
a) f is one-one but not onto R
b) f is onto R but not one-one
c) f is one-one and onto R
d) f is neither one-one nor onto R
18. The range of the function $f(x)=\frac{1}{2-\cos 3 x}$, is
a) $[-1 / 3,0]$
b) R
c) $[1 / 3,1]$
d) None of these
19. Let $A=\{2,3,4,5, \ldots, 16,17,18\}$. Let be the equivalence relation on $A \times A$, cartesian product of A and A, defined by $(a, b) \approx(c, d)$ if $a d=b c$, then the number of ordered pairs of the equivalence class of $(3,2)$ is
a) 4
b) 5
c) 6
d) 7
20. Let n be the natural number. Then, the range of the function $f(n)=8-n_{P_{n}-4}, 4 \leq n \leq 6$, is
a) $\{1,2,3,4\}$
b) $\{1,2,3,4,5,6\}$
c) $\{1,2,3\}$
d) $\{1,2,3,4,5\}$
