

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 2

Topic :-matrices

Matrix *A* is such that $A^2 = 2A - I$, where *I* is the indentity matrix, then for $n \ge 2$, A^n is equal to 1. c) $2^{n-1}A - (n-1)I$ d) $2^{n-1}A - I$ a) nA - (n - 1)Ib)*nA*−*I* Matrix M_r is defined as $M_r = \begin{bmatrix} r & r-1 \\ r-1 & r \end{bmatrix}$, $r \in N$ value of $\det(M_1) + \det(M_2) + \det(M_3) + \dots + \det(M_n)$ 2. $det(M_{2007})$ is a) 2007 b)2008 c) 2008^2 d) 2007^2 3. The number of solutions of the system of equations $x_2 - x_3 = 1$, $-x_1 + 2x_3 = -2$, $x_1 - 2$, $x_1 - 2$ $x_2 = 3$ is b)One c) Two d)Infinite a) Zero 4. If $A = [a_{ij}]$ is a scalar matrix of order $n \times n$ such that $a_{ii} = k$ for all *i*, then trace of *A* is equal to a) nk b)*n* + *k* c) n/kd) None of these 5. If $D = \text{diag}[d_1, d_2, d_3, ..., d_n]$, where $d_i \neq 0 \forall i = 1, 2, ..., n$ then D^{-1} is equal to a) 0 b) I_n c) diag $[d_1^{-1}, d_2^{-1}, ..., d_n^{-1}]$ d) None of the above 6. If $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$, then $\lim_{n \to \infty} \frac{1}{n} A^n$ is a) $\begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ d) None of these 7. The system of equations 2x + y - 5 = 0, x - 2y + 1 = 0, 2x - 14y - a = 0, is consistent. Then, *a* is equal to a) 1 b)2 c) 5 d) None of these 8. The system of equation $ax + y + z = \alpha - 1$ $x + \alpha y + z = \alpha - 1$ $x + y + \alpha z = \alpha - 1$ Has no solution, if α is c) Either-2 or1 a) 1 b)Not-2 d)-2

9. A matrix $A = |a_{ij}|$ is an upper triangular matrix, if a) It is a square matrix and $a_{ij} = 0, i < j$ b) It is a square matrix and $a_{ij} = 0, i > j$ c) It is not a square matrix and $a_{ij} = 0, i > j$ d) It is not a square matrix and $a_{ij} = 0$, i < j10. If $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ and A^2 is the identity matrix, then x is equal to b)0 a)-1 c) 1 d)2 11. $A = \begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}$ and $A^{-1} = \lambda$ (adj *A*), then λ equal to c) $-\frac{1}{2}$ b) $\frac{1}{2}$ a) $-\frac{1}{6}$ d) $\frac{1}{4}$ 12. If $A = [a_{ij}]$ is a 4 × 4 matrix and C_{ij} is the cofactor of the element a_{ij} in |A|, then the expression $a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + a_{14}C_{14}$ is equal to a) 0 b) -1 c) 1 d) |A| 13. For what value of λ , the system of equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = 10$ is consistent? b)2 c) -1 d)3 a) 1 14. If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then A^{100} is equal to a) $2^{100}A$ b)2⁹⁹A c) 100 A d) 299 A 15. Inverse of the matrix $\begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ is a) $\begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ b) $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$ c) $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ d) $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$ 16. Which of the following is correct? a) Determinant is square matrix b) Determinant is a number associated to a matrix

- c) Determinant is a number associated to a square matrix
- d) None of these

17. If
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then *B* equals
a) $I\cos \theta + J\sin \theta$ b) $I\sin \theta + J\cos \theta$ c) $I\cos \theta - J\sin \theta$ d) $-I\cos \theta + J\sin \theta$

18. What must be the matrix *X* if $2X + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$? a) $\begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & -3 \\ 2 & -1 \end{bmatrix}$ c) $\begin{bmatrix} 2 & 6 \\ 4 & -2 \end{bmatrix}$ d) $\begin{bmatrix} 2 & -6 \\ 4 & -2 \end{bmatrix}$ 19. *A*and*B* be 3 × 3 matrices. Then, *AB* = 0 implies
a) *A* = 0 and*B* = 0
b) |*A*| = 0 and |*B*| = 0
c) Either |*A*| = 0 or |*B*| = 0
d) *A* = 0 or *B* = 0

20. Let
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, $D = \begin{bmatrix} 3 \\ 5 \\ 11 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & -1 & -2 \\ 2 & 1 & 1 \\ 4 & -1 & -2 \end{bmatrix}$, if $X = A^{-1}D$, then X is equal to
a) $\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ b) $\begin{bmatrix} \frac{8}{3} \\ -1 \\ \frac{3}{0} \end{bmatrix}$ c) $\begin{bmatrix} -\frac{8}{3} \\ 1 \\ 0 \end{bmatrix}$ d) $\begin{bmatrix} \frac{8}{3} \\ \frac{1}{3} \\ -1 \end{bmatrix}$