CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :-MATRICES

1. If $A=\left[a_{i j}\right]_{m \times n}$ is a matrix of rank r and B is a square submatrix of order $r+1$, then
a) B is invertible
b) B is not invertible
c) Bmay or may not be invertible
d) None of these
2. If A is square matrix, A^{\prime}, is its transpose, then $\frac{1}{2}\left(A-A^{\prime}\right)$ is
a) A symmetric matrix
b) A skew-symmetric matrix
c) A unit matrix
d) An elementary matrix
3. Inverse of the matrix $A=\left[\begin{array}{rr}1 & -2 \\ 3 & 4\end{array}\right]$ is
a) $\frac{1}{10}\left[\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right]$
b) $\frac{1}{10}\left[\begin{array}{cc}4 & 2 \\ -3 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}4 & 2 \\ -3 & 1\end{array}\right]$
d) $\frac{1}{10}\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$
4. Let A be a matrix of rank r.Then,
a) $\operatorname{rank}\left(A^{T}\right)=r$
b) $\operatorname{rank}\left(A^{T}\right)<r$
c) $\operatorname{rank}\left(A^{T}\right)>r$
d) None of these
5. The adjoint matrix of $\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ is
a) $\left[\begin{array}{lll}4 & 8 & 3 \\ 2 & 1 & 6 \\ 0 & 2 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3\end{array}\right]$
c) $\left[\begin{array}{ccc}11 & 9 & 3 \\ 1 & 2 & 8 \\ 6 & 9 & 1\end{array}\right]$
d) $\left[\begin{array}{ccc}1 & -2 & 1 \\ -1 & 3 & 3 \\ -2 & 3 & -3\end{array}\right]$
6. If a matrix A is such that $3 A^{3}+2 A^{2}+5 A+I=0$, then A^{-1} is equal to
a) $-\left(3 A^{2}+2 A+5\right)$
b) $3 A^{2}+2 A+5$
c) $3 A^{2}-2 A-5$
d) None of these
7. Let $A=\left[a_{i j}\right]_{n \times n}$ be a square matrix, and let $c_{i j}$ be cofactor of $a_{i j}$ in A IIf $C=\left[c_{i j}\right]$, then
a) $|C|=|A|$
b) $|C|=|A|^{n-1}$
c) $|C|=|A|^{n-2}$
d) None of these
8. The system of equations $x+y+z=0,2 x+3 y+z=0$ and $x=2 y=0$ has
a) A unique solution; $x=0, y=0, z=0$
b) Infinite solutions
c) No solutions
d) Finite number of non-zero solutions
9. If $2 X-\left[\begin{array}{ll}1 & 2 \\ 7 & 4\end{array}\right]=\left[\begin{array}{cc}3 & 2 \\ 0 & -2\end{array}\right]$, then X is equal to
а) $\left[\begin{array}{ll}2 & 2 \\ 7 & 4\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 2 \\ 7 & 2\end{array}\right]$
c) $\left[\begin{array}{ll}2 & 2 \\ \frac{7}{2} & 1\end{array}\right]$
d) None of these
10. Let $A=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$ and $A^{-1}=x A+y I$, then the values of x and y are
a) $x=-\frac{1}{11}, y=\frac{2}{11}$
b) $x=-\frac{1}{11}, y=-\frac{2}{11}$
c) $x=\frac{1}{11}, y=\frac{2}{11}$
d) $x=\frac{1}{11}, y=-\frac{2}{11}$
11. Let A and B be two symmetric matrices of same order. Then, the matrix $A B-B A$ is
a) A symmetric matrix
b) A skew-symmetric matrix
c) A null matrix
d) The identity matrix
12. If $A=\left[\begin{array}{cc}1 & x \\ x^{2} & 4 y\end{array}\right] a, B=\left[\begin{array}{cc}-3 & 1 \\ 1 & 0\end{array}\right]$ and $\operatorname{adj} A+B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then the values of x and y are respectively
a) $(1,1)$
b) $(-1,1)$
c) $(1,0)$
d) None of these
13. Let p is a non-singular matrix such that $1+p+p^{2}+\ldots+p^{n}=O$ (O denotes the null matrix), then p^{-1} is
a) p^{n}
b) $-p^{n}$
c) $-\left(1+p+\ldots+p^{n}\right)$
d) None of these
14. If $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{40}\left[\begin{array}{ccc}5 & 10 & -5 \\ -5 & -2 & 13 \\ 10 & -4 & 6\end{array}\right]\left[\begin{array}{l}5 \\ 0 \\ 5\end{array}\right]$, then the value of $x+y+z$ is
a) 3
b) 0
c) 2
d) 1
15. The matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is the matrix reflection in the line
a) $x=1$
b) $x+y=1$
c) $y=1$
d) $x=y$
16. If $\left[\begin{array}{lr}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$, then
a) $a=1, b=1$
b) $a=\sin 2 \theta, b=\cos 2 \theta$
c) $a=\cos 2 \theta, b=\sin 2 \theta$
d) None of the above
17. If $A=\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$, then adj A is equal to
a) A
b) A^{\prime}
c) 3 A
d) $3 A^{\prime}$
18. Let the homogeneous system of linear equations $p x+y+z=0, x+q y+z=0$, and $x+y+r z=0$, where $p, q, r \neq 1$, have a non-zero solution, then the value of $\frac{1}{1-p}+\frac{1}{1-q}+\frac{1}{1-r}$ is
a) -1
b) 0
c) 2
d) 1
19. If $A=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$ and $A B=I$, then B is equal to
a) $\cos ^{2} \frac{\theta}{2} \cdot A$
b) $\cos ^{2} \frac{\theta}{2} \cdot A^{T}$
c) $\cos ^{2} \theta \cdot I$
d) $\sin ^{2} \frac{\theta}{2} \cdot A$
20. The values of x, y, z in order, if the system of equations $3 x+y+2 z=3,2 x-3 y-z$ $=-3, x+2 y+z=4$ has unique solution, are
a) $2,1,5$
b) $1,1,1$
c) $1,-2,-1$
d) $1,2,-1$
