

Class : XIth Date : Subject : Maths DPP No. :4

Topic :-Application of Derivatives

1. The set $\{x^3 - 12x: -3 \le x \le 3\}$ is equal to

a)
$$\{x: -16 \le x \le 16\}$$
 b) $\{x: -12 \le x \le 12\}$ c) $\{x: -9 \le x \le 9\}$ d) $\{x: 0 \le x \le 10\}$

2. If $xy = a^2$ and $S = b^2x + c^2y$ where *a*, *b* and *c* are constants, then the minimum value of *S* is

	a) <i>abc</i>	b) $\sqrt{a} bc$	c) 2 <i>abc</i>	d) None of these		
3.	Let $g(x) = f(x) + f'(1 - x)$ and $f''(x) < 0, 0 \le x \le 1$. Then					
	a) $g(x)$ increases on [1/2,1] and decreases on [0,1/2] b) $g(x)$ decreases on [0,1] c) $g(x)$ increases on [0,1] d) $g(x)$ increases on [0,1/2] and decreases on [1/2,1]					
4.	Select the correct state a) Strictly increasing in c) Decreases in the inte	the interval $\left(\frac{1}{2}, 2\right)$	(d) The function $f(x) = xe^{1-x}$ b) Increasing in the interval $(0, \infty)$ d) Strictly decreasing in the interval $(1, \infty)$			
5.	a_n has in (0, 1)	$+\frac{a_{n-1}}{2}+a_n=0$. Then the b) At most one zero	e function $f(x) = a_0 x^n +$ c) Only 3 zeros	$a_1 x^{n-1} + a_2 x^{n-2} + +$ d) Only 2 zeros		
6.	A particle is moving al moving with uniform a) Rotation	ong the curve $x = at^2 + b$ b) Velocity	$bt + c$. If $ac = h^2$, then th c) Acceleration	e particle would be d) Retardation		

7.	The approximate value of $(33)^{1/5}$ is					
	a) 2.0125	b) 2.1	c) 2.01	d) None of these		
8.	At an instant the diagonal of a square is increasing at the rate of 0.2 cm/sec and the area is increasing at the rate of 6 cm ² /sec. At that moment its side is					
	a) $\frac{30}{\sqrt{2}}$ cm	b) $30\sqrt{2}$ cm	c) 30 cm	d) 15 cm		
9.	A missile is fired from the ground level rises <i>x</i> metres vertically upwards in <i>t</i> seconds where $x = 100t - \frac{25}{2}t^2$. The maximum height reached is					
	a) 200 m	b) 125 m	c) 160 m	d) 190 m		
10.	The intercepts made by the tangent to the curve $y = \int_0^x t dt$, which is parallel to the line $y = 2$, on y-axis are equal to					
	a) 1, - 1	b) —2, 2	c) 3	d) ⁻³		
11.	The function $f(x) = ta$ a) Always increases b) Always decreases c) Never decreases d) Some times increas	an $x-x$ es and some times decre	eases			
	The maximum value of xy subject to $x + y = 8$, is					
12.	The maximum value of	of xy subject to $x + y = 8$, is			
12.	The maximum value c a) 8	of <i>xy</i> subject to <i>x</i> + <i>y</i> = 8 b) 16	c) 20	d)24		
12. 13.	a) 8		c) 20 rallel to the line $y = 3x + 3x$	-		
	a) 8 The tangent to the cur a) (3, 9)	b) 16 $y = 2x^2 - x + 1$ is par- b) (2, -1) $y = 2x^3$ such that the	 c) 20 c) 10 c) (2, 1) 	- 9 at the point d) (1, 2) licular to the line		
13.	 a) 8 The tangent to the cur a) (3, 9) The point <i>P</i> of the cur 	b) 16 true $y = 2x^2 - x + 1$ is particular b) (2, -1) true $y^2 = 2x^3$ such that the ten by	 c) 20 c) 10 c) (2, 1) 	- 9 at the point d) (1, 2)		
13.	a) 8 The tangent to the cur a) (3, 9) The point <i>P</i> of the cur 4x - 3y + 2 = 0 is giv a) (2, 4) If the parametric equa curve at the point <i>t</i> =	b) 16 true $y = 2x^2 - x + 1$ is particular b) (2, -1) true $y^2 = 2x^3$ such that the ten by	c) 20 callel to the line $y = 3x + c$ c) (2, 1) e tangent at <i>P</i> is perpend c) (1/2, -1/2) $x = e^t \cos t, y = e^t \sin t, the second $	- 9 at the point d) (1, 2) dicular to the line d) $(1/8, -1/16)$ hen the tangent to the		
13. 14.	a) 8 The tangent to the cur a) (3, 9) The point <i>P</i> of the cur 4x - 3y + 2 = 0 is giv a) (2, 4) If the parametric equa	b) 16 twe $y = 2x^2 - x + 1$ is par- b) (2, -1) we $y^2 = 2x^3$ such that the en by b) $(1, \sqrt{2})$ ation of a curve given by	c) 20 callel to the line $y = 3x + c$ c) (2, 1) e tangent at <i>P</i> is perpend c) (1/2, -1/2) $x = e^t \cos t, y = e^t \sin t, the second $	- 9 at the point d) (1, 2) licular to the line d) $(1/8, -1/16)$		
13. 14.	a) 8 The tangent to the cur a) (3, 9) The point <i>P</i> of the cur 4x - 3y + 2 = 0 is giv a) (2, 4) If the parametric equa curve at the point $t =a$ a) 0	b) 16 twe $y = 2x^2 - x + 1$ is par- b) (2, -1) we $y^2 = 2x^3$ such that the ten by b) (1, $\sqrt{2}$) ation of a curve given by $\pi/4$ makes with axis of x b) $\pi/4$	c) 20 callel to the line $y = 3x + c$ c) (2, 1) e tangent at <i>P</i> is perpend c) (1/2, -1/2) $x = e^t \cos t, y = e^t \sin t, the c the angle c) \pi/3$	- 9 at the point d) (1, 2) dicular to the line d) $(1/8, -1/16)$ hen the tangent to the		
13. 14. 15.	a) 8 The tangent to the cur a) (3, 9) The point <i>P</i> of the cur 4x - 3y + 2 = 0 is giv a) (2, 4) If the parametric equa curve at the point $t =$	b) 16 twe $y = 2x^2 - x + 1$ is par- b) (2, -1) we $y^2 = 2x^3$ such that the ten by b) (1, $\sqrt{2}$) ation of a curve given by $\pi/4$ makes with axis of x b) $\pi/4$	c) 20 callel to the line $y = 3x + c$ c) (2, 1) e tangent at <i>P</i> is perpend c) (1/2, -1/2) $x = e^t \cos t, y = e^t \sin t, the c the angle c) \pi/3$	- 9 at the point d) (1, 2) dicular to the line d) $(1/8, -1/16)$ hen the tangent to the d) $\pi/2$		

- 18. The minimum value of 2x + 3y, when xy = 6, is

 a) 12
 b) 9
 c) 8
 d) 6
- ^{19.} If $(x) = x^2 2x + 4$ on [1, 5], then the value of a constant *c* such that $\frac{f(5) f(1)}{5 1} = f'(c)$, is a) 0 b) 1 c) 2 d) 3

20. Let *a*,*b* be two distinct roots of a polynomial *f*(*x*). Then there exists at least one root lying between *a* and *b* of the polynomial
a) *f*(*x*)
b) *f'*(*x*)
c) *f*"(*x*)
d) None of these