

Class : XIth Date :

a) 30 π m²/sec

Subject : Maths DPP No. :1

Topic :-Application of Derivatives

1.	The maximum value of the function $f(x)$ given by $f(x) = x(x-1)^2$, $0 < x < 2$, is					
	a) 0 b) 4/27	c) -4	d)1/4			
2.	For a given integer k, in the interval $\left[2\pi k + \frac{\pi}{2}, 2\pi k - \frac{\pi}{2}\right]$ the graph of sin x is					
	a) Increasing from -1 to 1	b)Decreasing from -1 to 0				
	c) Decreasing from 0 to 1	d)None of the above	None of the above			
3.	If θ is the semi-vertical angle of a cone of maximum volume and given slant height, then					
	$\tan \theta$ is given by					
	a) 2 b) 1	c) $\sqrt{2}$	d) $\sqrt{3}$			
4.	The value of <i>b</i> for which the function $f(x) = \sin x - bx + c$ is decreasing in the interval					
	$(-\infty,\infty)$ is given by					
	a) $b < 1$ b) $b \ge 1$	c) <i>b</i> > 1	d) $b \leq 1$			
5.	The function $f(x) = 2x^3 + 3x^2 - 12x + 1$ decreases in the interval					
	a) (2, 3) b) (1, 2)	c) (-2, 1)	d)(-3, -2)			
6.	If $f(x) = 2x + \cot^{-1}x + \log(\sqrt{1 + x^2} - x)$, then $f(x)$					
	a) Increases on R					
	b) Decreases in $[0, \infty)$					
	c) Neither increases nor decreases in $(0, \infty)$					
	d)None of these					
7.	The maximum value of $f(x) = 3\cos^2 x + 4\sin^2 x + \cos\frac{x}{2} + \sin\frac{x}{2}$, is					
	a) 4 b) $3 + \sqrt{2}$		d) 2 + $\sqrt{2}$			
8.	If $a^2x^4 + b^2y^4 = c^6$, then maximum value of xy is					
	a) $\frac{c^2}{\sqrt{ab}}$					
	•					
	b) $\frac{c^3}{ab}$					
	c^3					
	$c) \frac{c^{3}}{\sqrt{2ab}}$ $d) \frac{c^{3}}{2ab}$					
	d) $\frac{c^3}{c^3}$					
_						
9.	A stone is dropped into a quiet lake. If the waves moves in circles at the rate of 30cm/sec					
	when the radius is 50 m, the rate of increase of enclosed area is					

c) $3\pi \text{ m}^2/\text{sec}$

d)None of these

b)30 m²/sec

10	The equation of the	tangent to the curve <i>x</i> :	$-t\cos t u - t\sin t dt$	the origin is		
10.	a) $x = 0$	b) $v = 0$	c) $x + y = 0$	-		
11.	 11. The rate of change of the surface area of a sphere of a sphere of radius<i>r</i>, when t increasing at the rate of 2 cm/sis proportional to 					
	a) $\frac{1}{r}$	b) $\frac{1}{r^2}$	c) <i>r</i>	d) r^2		
12.	a) <i>e</i>	b) <i>e^e</i>	c) <i>e</i> ^{1/e}	d) $(1/e)^{1/e}$		
13.			b) $f(x)$ has maxim	ne of the following is correct b) $f(x)$ has maximum $at x = 6$ d) $f(x)$ has maxima or minima		
14.						
	a) 750 cm ³ / _s	b)75 cm ³ /s	c) 300 cm ³ / _s	d)150 cm ³ /s		
15.						
	a) $y = x$		c) $y = 0$	-		
16.	The normal to the curve $5x^5 - 10x^3 + x + 2y + 6 = 0$ at $P(0, -3)$ meets the curve again at the point					
17.	$-\theta \cos \theta$) at any point θ , is such that it a) Makes a constant angle with <i>x</i> -axis b) Is at a constant distance from the origin c) Passes through the origin					
18.	d) Satisfies all the the If $f(x) = \begin{cases} 3x^2 + 12x \\ 37 - x \end{cases}$	$x - 1, -1 \le x \le 2$ x, $2 < x \le 3$, the	n			
	a) $f(x)$ is increasing b) $f(x)$ is continuous c) $f(x)$ is maximum d) All the above	s in [— 1, 3]				
19.	The value of <i>c</i> , in the Lagrange's Mean value theorem $\frac{f(b) - f(a)}{b - a} = f'(c)$, for the function $f(x) = x(x - 1)(x - 2)$ in the interval [0, 1/2], is					
	a) $\frac{1}{4}$	b) $1 - \frac{\sqrt{21}}{6}$	c) $\frac{9}{8}$	d) $1 + \frac{\sqrt{21}}{6}$		
20.	If $f(x) = kx - \sin x$ i					
	a) <i>k</i> > 1	b) $k > -1$	c) <i>k</i> < 1	d) $k < -1$		