

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 1

Topic :- CONTINUITY AND DIFFERENTIABILITY

- Let [x] denotes the greatest integer less than or equal to x and f(x) = [tan² x]. Then,

 a) lim f(x) does not exist
 b) f(x) is continuous at x = 0
 c) f(x) is not differentiable at x = 0
 d) f'(0) = 1

 The value of f(0) so that (-e^x + 2^x)/x may be continuous at x = 0 is

 a) log(1/2)
 b) 0
 c) 4
 d) -1 + log 2

 Let f(x) be an even function. Then f'(x)
- 3. Let f (x) be an even function. Then f'(x)
 a) Is an even function b) Is an odd function c) May be even or odd d) None of these
- 4. If $f(x) = \begin{cases} [\cos \pi \ x], x < 1 \\ |x 2|, 2 > x \ge 1 \end{cases}$, then f(x) is
 - a) Discontinuous and non-differentiable at x = -1 and x = 1
 - b) Continuous and differentiable at x = 0
 - c) Discontinuous at x = 1/2
 - d) Continuous but not differentiable at x = 2

5. If
$$f(x) = \begin{cases} \frac{|x+2|}{\tan^{-1}(x+2)}, & x \neq -2\\ 2, & x = -2 \end{cases}$$
, then $f(x)$ is

- a) Continuous at x = -2
- b) Not continuous x = -2
- c) Differentiable at x = -2
- d) Continuous but not derivable at x = -2

6. If $f(x) = |\log |x||$, then

a) f(x) is continuous and differentiable for all x in its domain

- b) f(x) is continuous for all x in its domain but not differentiable at $x = \pm 1$
- c) f(x) is neither continuous nor differentiable at $x = \pm 1$
- d) None of the above

7. If
$$f'(a) = 2$$
 and $f(a) = 4$, then $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$ equals
a) $2a - 4$ b) $4 - 2a$ c) $2a + 4$ d) None of these

- 8. If $f(x) = x(\sqrt{x} + \sqrt{x+1})$, then a) f(x) is continuous but not differentiable at x = 0 b) f(x) is differentiable at x = 0c) f(x) is not differentiable at x = 0 d) None of the above
- 9. If $f(x) = \begin{cases} ax^2 + b, \ b \neq 0, \ x \le 1 \\ x^2b + ax + c, \ x > 1 \end{cases}$, then, f(x) is continuous and differentiable at x = 1, if a) $c = 0, \ a = 2b$ b) $a = b, \ c \in R$ c) $a = b, \ c = 0$ d) $a = b, \ c \neq 0$

10. For the function $f(x) = \begin{cases} |x-3|, x \ge 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, x < 1 \end{cases}$ which one of the following is incorrect? a) Continuous at x = 1 b) Derivable at x = 1 c) Continuous at x = 3 d) Derivable at x = 3

11. If
$$f: R \to R$$
 is defined by

$$f(x) = \begin{cases} \frac{2 \sin x - \sin 2x}{2x \cos x}, & \text{if } x \neq 0, \\ a, & \text{if } x = 0 \end{cases}$$

Then the value of *a* so that *f* is continuous at 0 is

- 12. f(x) = x + |x| is continuous for a) $x \in (-\infty, \infty)$ b) $x \in (-\infty, \infty) - \{0\}$ c) Only x > 0 d) No value of x
- 13. If the function

$$f(x) = \begin{cases} \{1 + |\sin x|\}^{\overline{|\sin x|}}, & -\frac{\pi}{6} < x < 0\\ b, & x = 0\\ e^{\frac{\tan 2x}{\tan 3x}}, & 0 < x < \frac{\pi}{6} \end{cases}$$

Is continuous at x = 0

a)
$$a = \log_e b$$
, $b = \frac{2}{3}$ b) $b = \log_e a$, $a = \frac{2}{3}$ c) $a = \log_e b$, $b = 2$ d) None of these

14. If
$$f(x) = x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} + \dots + \frac{x^2}{(1+x^2)^n} + \dots$$
, then at $x = 0$, $f(x)$

- a) Has no limit
- b) Is discontinuous
- c) Is continuous but not differentiable
- d) Is differentiable

15. Let
$$f(x) = \begin{cases} 1, & \forall & x < 0 \\ 1 + \sin x, & \forall & 0 \le x \le \pi/2 \end{cases}$$
, then what is the value of $f'(x)$ at $x = 0$?
a) 1 b) -1 c) ∞ d) Does not exist

16. The function $f(x) = x - |x - x^2|$ isb) Discontinuous at x = 1a) Continuous at x = 1b) Discontinuous at x = 1c) Not defined at x = 1d) None of the above

- 17. If f(x + y + z) = f(x).f(y).f(z) for all *x*,*y*,*z* and f(2) = 4, f'(0) = 3, then f'(2) equals a) 12 b) 9 c) 16 d) 6
- 18. If $f(x) = |\log_e |x||$, then f'(x) equals a) $\frac{1}{|x|'}, x \neq 0$ b) $\frac{1}{x}$ for |x| > 1 and $\frac{-1}{x}$ for |x| < 1c) $\frac{-1}{x}$ for |x| > 1 and $\frac{1}{x}$ for |x| < 1d) $\frac{1}{x}$ for |x| > 0 and $-\frac{1}{x}$ for x < 0

19. If the function $f(x) = \begin{cases} \frac{1 - \cos x}{x^2}, \text{ for } x \neq 0\\ k, \text{ for } x = 0 \end{cases}$ is continuous at x = 0, then the value of k is

R

a) 1 b) 0 c)
$$\frac{1}{2}$$
 d) -1