7. Cubes and Cube Roots

Q 1 Find the cube of 18.
Mark (1)

Q 2 Express 6^{3} as the sum of odd numbers using the pattern given below.

$$
\begin{array}{r}
1=1=1^{3} \\
3+5=8=2^{3} \\
7+9+11=27=3^{3} \\
13+15+17+19=64=4^{3} \\
21+23+25+27+29=125=5^{3}
\end{array}
$$

Mark (1)

Q 3 Show that 189 is not a perfect cube.
Mark (1)

Q 4 Find the number whose cube is 9261 .
Mark (1)

Q 5 Find the cube root of 512.
Mark (1)

Q 6 Evaluate: $(0.8)^{3}$
Mark (1)

Q 7
Find the cube of $1 \frac{2}{3}$.

Mark (1)
Q8 Evaluate: $\sqrt[3]{4^{3} \times 6^{3}}$
Mark (1)

Q 9 Find the one's digit of the cube of each of the following:
(a) 1024
(b) 71

Q 10 Find the smallest number by which 12500 must be multiplied so that the product is a perfect cube. Marks (2)

Q 11 Find the smallest number by which 704 must be divided to obtain a perfect cube.
Marks (2)

Q 12 Find the cube root of 140×2450.
Marks (2)

Q 13
125
512

Marks (2)

Q 14 Find the cube root of 10648 by prime factorisation method.
Marks (2)
Q 15 Find the cube of $5 \frac{2}{7}$.
Marks (2)

Q 16 Find the cube root of 1.331 .
Marks (2)

Q 17

Evaluate: $\sqrt[3]{8 \times 17 \times 17 \times 17}$

Marks (2)

Q 18 Find the cube root of 27×1728.
Marks (2)

Q 19 Find the cube root of 5832 .
Marks (2)

Q 20 Find the cube root of 91125.
Marks (2)

Evaluate: $\sqrt[3]{125 \times 27}$

Marks (2)

Q 22
Evaluate:
$\sqrt[3]{700 \times 2 \times 49 \times 5}$

Marks (2)
Q 23 Find the cube root of 32768 through estimation.
Marks (3)

Q 24 Find the smallest number by which 1600 must be divided so that the quotient is a perfect cube, further find its cube root.
Marks (3)

Q 25 Sheetal makes a cuboid of sides $5 \mathrm{~cm}, 2 \mathrm{~cm}$ and 5 cm . How many such cuboids will she need to form a cube?
Marks (3)

Q 26 Find the cube root of the following by prime factorisation.
(i) 8000
(ii) 13824

Marks (4)

Q 27 Find the smallest number which when multiplied with 3600 will make the product a perfect cube. Further find the cube root of the product.

Marks (4)

Q 28 The three numbers are in the ratio $2: 3: 4$. The sum of their cubes is 33957 . Find the numbers.
Marks (4)
Q 29 The volume of a cube is $9261000 \mathrm{~m}^{3}$. Find the side of the cube.
Marks (4)
Q 30 Find the cube root of the following by prime factorisation.
(i) 8000
(ii) 13824

Marks (4)

Most Important Questions

Q 1
Find the cubes of the following numbers:
(a) 5
(b) 13
(c) 50
(d) 120

Q 2

The smallest number by which 120393 must divided, so that the quotient is a perfect cube
(a) 7
(b) 12
(c) 13
(d) 3

Q 3
Which of the following is the cube of an odd natural number:
(a) 32678
(b) 4096
(c) 6859
(d) 1728

Q 4
Which of the following are the cubes of even natural numbers?
(a) 729
(b) 3375
(c) 1331 (d) 13824

Q 5 Match the items in list A with suitable items in list B.

List A
A. $\sqrt[3]{\frac{27}{5832}}$

List B
B. $\sqrt[3]{\frac{343}{125}}$
C. $\sqrt[3]{\frac{-2197}{-512}}$
(i) $\frac{7}{5}$
(ii) $\frac{13}{8}$
(iii) $\frac{1}{6}$
(iv) $\frac{-13}{8}$

Code :
(a) A-ii, B-iv, C-i (b) A-iii, B-i, C-ii
(c) A-iv, B-ii, C-iii (d) A-i, B-iii, C-iv

If $x=\left(\frac{729}{2197}\right)^{1 / 3}+\left(\frac{9261}{42875}\right)^{1 / 3}$. Then $x=$
(a) $\frac{84}{65}$
(b) $\frac{94}{65}$
(c) $\frac{104}{65}$
(d) $\frac{124}{65}$

If $x=\left(\frac{4}{9}\right)^{3}+\sqrt[3]{\frac{2744}{729}}$, then $x=$
(a) $\frac{1298}{729}$
(b) $\frac{1200}{729}$
(c) $\frac{1198}{729}$
(d) $\frac{1100}{729}$

Q 8 One's place digit in the cube of 833 is
(a) 7
(b) 3
(c) 9
(d) 1

Q 10 Find the smallest number by which 243 must be multiplied so that the product is a perfect cube.

If $\sqrt[3]{\frac{x}{y}}=\frac{2}{3}$, then the value of $\frac{x}{y}$ is
(a) $\frac{2}{3}$
(b) $\frac{4}{9}$
(c) $\frac{8}{27}$
(d) None of these

Q 12 If 9A is a perfect cube number what will be the value of A.

Q 13 What will be the Unit place digit in cube root of 1331 ?
Q 14 Find dhe cube root of $\sqrt[3]{-2300 \times 5290}$
Q 15 Find the value of $\sqrt[3]{392} \times \sqrt[3]{448}$.

