SOLUTIONS

Colligative properties

- 1. Why the boiling point of solution is higher than pure liquid?
- 2. Fill the space of column -B by matching with Column -A by taking following values:

 ΔH_{mix} < 0 and ΔV_{mix} < 0 ; ΔH_{mix} = 0 and ΔV_{mix} = 0 ; ΔH_{mix} > 0 and ΔV_{mix} > 0

	Column –A	Column -B
А	Ethyl alcohol and water	
В	CCI ₄ and Benzene or toluene	
С	Water- nitric acid	
D	Aniline –acetone	

E	Chloro benzene-Bromobenzene	
F	n-hexane and n-heptane	

- 3. Ammonia dissolve in water and Fluorine dissolve in water will not obey Henry's law why?
- 4. Fill in the blanks.
 - a) Constant boiling mixtures are called -----?
 - b) The boiling point of one molal solution is known as -----?
 - c) Liquid having similar structure and polarity form -----type of solution?
 - d) Solution having same osmotic pressure have same concentration are known as ------?
 - e) The symptom observed by a person at high altitudes is -----?

Downloaded from www.studiestoday.com

5. Identify the portions from the following graphs:

56

(G)

Answers

1.Ans. Due to lowering in v.p

2. Ans A & B =>
$$\Delta H_{mix}$$
> 0 and ΔV_{mix} > 0
C & D => ΔH_{mix} < 0 and ΔV_{mix} < 0
E & F => ΔH_{mix} = 0 and ΔV_{mix} = 0

- 3. Ans. Because ammonia highly soluble and fluorine highly reactive with water.
- 4.Ans.a- Azeotrope; b- molal elevation constant/ Ebulliscopic constant; c- Ideal solution; d- Isotonic solution; ; e- Anaxia
- 5. Ans A- K_H ; B = ΔP ; C = p_1^0 ; D = ideal solution; E= +ve deviation; F= -ve deviation G. ΔT_b H. ΔT_f

Concentrations

- 1. Under what condition molarity and molality will be same?
- 2. 15ppm by mass = ----- (w/w) %
- 3. Out of 1M and 1m aqueous solution which is more concentrated
- 4. What is the molarity of water? (taking density of water =1g/cc)
- 5. What will be the mole fraction of water in equimolar solution of ethanol?
- 6.Determine the correct order of the property mentioned against them:
- (a) 10% Glucose (p₁), 10% Urea (p₂), 10% Sucrose(p₃) { Increasing osmotic pressure}
- (b) 0.1 M NaCl ; 0.1M Urea ; 0.1M CaCl $_2$ { Increasing order of boilig point}
- (c) 0.1 g NaCl; 0.1g KCl; 0.1 g LiCl Increasing order of V.P}

Answers

- 1.Ans: Density of the solution is unit.
- 2. Ans 1.5 X 10⁻³
- 3. Ans. 1M as density of water is 1gm/ml
- 4.Ans 55.55 moles
- 5.Ans 0.5
- 6.(a) Sucrose < Glucose < Urea
 - (b)Urea < NaCl < CaCl₂
- (c) LiCl < NaCl < KCl

Concept: Van't Hoff's Factor

- 1. What is the Vant Hoff factor in $K_4[Fe(CN)_6]$?
- 2. What will be the van't Hoff factor for 0.1 M ideal solution?
- 3. Out of 1M CaCl₂ and 1 M AlCl₃ which having higher vapour pressure?
- 4. How the vant't Hoff factor changes with decrease of molality of the solution?
- 5. Match the following

Column –A	Column -B

А	100% Dissociation of NaCl	0.5
В	100% Dissociation of AICl ₃	1.5
С	100% Dissociation of Na₂SO₄	2
D	100% Dissociation of Al ₂ (SO4) ₃	5
E	50% Dissociation of AgCl	3
F	75% Dissociation of AgBr	1.75
G	100% dimerisation of benzoic acid	4

Answers

- 1. Ans. Five
- 2. Ans. Van't Hoff factor = 1, because ideal solution does not undergo dissociation or association
- 3. Ans. 1 M $CaCl_2$, if we assume 100% dissociation, i for $CaCl_2$ is 3 and for $AlCl_3$ is 4 and relative lowering of V. P. is directly proportional to i.
- 4. Ans. Increases