CLASS XI-PHYSICS
 WORK, POWER AND ENERGY

ASSIGNMENT-1

NUMERICAL QUESTIONS:

Q. 1 A particle of mass $\frac{10}{7} \mathrm{Kg}$ is moving in the positive direction of x . Its initial position $\mathrm{x}=0$ \& initial velocity is $1 \mathrm{~m} / \mathrm{s}$. The velocity at $\mathrm{x}=10$ is -

Q. 2 A man is throwing bricks of mass 2 kg onto a floor of height 2 m . Bricks reaches to floor with speed $2 \sqrt{10} \mathrm{~m} / \mathrm{s}$. Man throws 10 bricks in a minute. If power of man is W watt then $\frac{3}{10} \mathrm{~W}$ is equal to -
Q. 3 An over head tank of capacity 10 k litre is kept at the top of building 15 m high. Water falls in tank with speed $5 \sqrt{2} \mathrm{~m} / \mathrm{s}$. Water level is at a depth 5 m below ground. The tank is to be filled in $1 / 2 \mathrm{hr}$. If efficiency of pump is 67.5% electric power used in hecto watt is -

Q. 4 A pendulum of mass $m=2 \mathrm{~kg}$ is pulled from position ' A ' by applying a constant horizontal force $F=\mathrm{mg} / 3$. Velocity (in m / s) at point ' B ' shown in figure -

Q. 5 A cube of mass 3 kg is kept on a frictionless horizontal surface. The block is given an impulse so that point ' A ' acquires velocity $4 \mathrm{~m} / \mathrm{s}$ in the direction shown. If speed of point B is $4 \sqrt{2} \mathrm{~m} / \mathrm{s}$, K.E. of block (in Joule) minus 10 Joule is -

Q. 6 A ball of mass 1 kg is dropped from height 10 m . If hits the ground with speed $8 \mathrm{~m} / \mathrm{s}$, magnitude of work done by air friction is (in Joule) minus 60 joule is -
Q. 7 A particle of mass $\frac{10}{7} \mathrm{Kg}$ is moving in the positive direction of x . Its initial position $\mathrm{x}=0$ \& initial velocity is $1 \mathrm{~m} / \mathrm{s}$. The velocity at $\mathrm{x}=10$ is -

Q. 8 A block of mass $m=1 \mathrm{~kg}$ moving on horizontal surface with speed $u=2 \mathrm{~m} / \mathrm{s}$ enters a rough horizontal patch ranging from $x=0.10 \mathrm{~m}$ to $\mathrm{x}=2.00 \mathrm{~m}$. If the retarding force f_{r} on the block in this range is inversely proportional to x over this range i.e.

$$
\begin{aligned}
\mathrm{f}_{\mathrm{r}} & =\frac{-\mathrm{k}}{\mathrm{x}} & & 0.10<\mathrm{x}<2.00 \\
& =0 & & \text { for } \mathrm{x}<0.10 \text { and } \mathrm{x}>2.00
\end{aligned}
$$

If $\mathrm{k}=0.5 \mathrm{~J}$ then the speed of this block as it crosses the patch is (use $\ell \mathrm{ln} 20=3$) in m/s is -
Q. 9 A particle moves in a straight line with its retardation proportional to its displacement ' x '. Change in kinetic energy is proportional to $\mathrm{n}^{\text {th }}$ power of x , where n is -
Q. 10 A particle of mass $10^{-2} \mathrm{~kg}$ is moving along the positive x -axis under the influence of a force $F(x)=-K /\left(2 x^{2}\right)$ where $K=10^{-2} \mathrm{Nm}^{2}$. At time $t=0$ it is at $x=1.0 \mathrm{~m}$ and its velocity is $\mathrm{v}=0$. Find its velocity when it reaches $x=0.50 \mathrm{~m}$.
Q. 11 A force shown in the $\mathrm{F}-\mathrm{x}$ graph is applied to a 5 kg cart, which then coast up a ramp as shown. Calculate the maximum height , $\mathrm{y}_{\text {max }}$, at which cart can reach? $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

Q. 12 A man is drawing water from a well with a bucket which leaks uniformly. The bucket when full weights 20 kg and when it arrives the top only half the water remains. The depth of the water is 20 m . What is the work done?
Q. 13 A person is painting his house walls. He stands on a ladder with a bucket containing paint in one hand and a brush in other. Suddenly the bucket slips from his hand and falls down on the floor. If the bucket with the paint had a mass of 6.0 kg and was at a height of 2.0 m at the time it

