CLASS XI-PHYSICS

LAWS OF MOTION
ASSIGNMENT-1

NUMERICAL QUESTIONS:

Q. 1 Pulleys are ideal and string are massless. The masses of blocks are $m_{1}=4 \mathrm{~kg}$ and $m_{2}=1 \mathrm{~kg}$ as shown. If all surfaces are smooth then the acceleration of m_{2} in $\mathrm{m} / \mathrm{s}^{2}$ is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

Q. 2 A block of mass 5 kg is placed on bus moving with acceleration $2 \mathrm{~m} / \mathrm{s}^{2}$. Pseudo force acting on block as seen by a man on ground is -
Q. 3 Three blocks A, B and C of mass m each are arranged in pulley mass system as shown. Coefficient of friction between block A and horizontal surface is equal to 0.5 and a force P acts on ' A ' in the direction shown. The value of P / mg so that block ' C ' doesn't move is -

Q. 4 Two blocks 1 and 2 of mass 2 kg and 4 kg are kept connected as shown in figure. All pulley and string are massless and surfaces are frictionless. Acceleration of block 1 at the instant shown is -

Q. 5 A block of mass 0.2 kg is kept on wedge of mass 0.6 kg which is kept on rough table. Block is slipping down with constant speed $2 \mathrm{~m} / \mathrm{s}$. Normal force on wedge due to table is (Assume wedge is stationary) -

Q. 6 In the given arrangement, strings and pulleys are light and all surface are frictionless. Assuming at $t=0$, system is released from rest, find the speed of block A (in decameter/sec) at $t=2 \mathrm{sec}$.

Q. 7 In the system shown in figure all surfaces are frictionless while pulley and strings are light. Mass of block A is $2 m$ while that of B is ' m '. Acceleration of block ' B ' (in $\mathrm{cm} / \mathrm{s}^{2}$) immediately after system is released from rest minus $320 \mathrm{~cm} / \mathrm{s}^{2}$ is (Take $\mathrm{g}=981 \mathrm{~cm} / \mathrm{s}^{2}$).

Q. 8 In the arrangement shown in figure end ' A ' of light inextensible string is pulled with constant velocity $\mathrm{v}=6 \mathrm{~m} / \mathrm{s}$. The velocity of block ' B ' is (in m / s) -

Q. 9 Figure shows a string passing through two fixed pulley P_{1} and P_{3} and a pulley P_{2} free to move vertically. One end of string is attached with ring A. Velocity of pulley P_{2} at the instant shown is (in m/s) -

Q.10 A block of mass 1 kg is just fit in a groove in a platform kept horizontally. Groove is along + ve xaxis. The platform is given acceleration $\vec{a}=2 \hat{i}+3 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$. If block is not slipping on platform the friction force acting on block (in Newton)
Q. 11 A block of mass 2 kg is placed on rough horizontal surface (coefficient of friction $=0.2$) and is pulled by horizontal force $F=2 t N$ where t : time in sec. Velocity of block at $t=4$ sec is -
Q. 12 A system consisting of man on platform is in equilibrium. Mass of man and platform are equal. If tension in left string is T_{1} and that in right string in T_{2}, then $5 T_{1} / T_{2}$ is -

