CLASS XI-PHYSICS FRICTION

ASSIGNMENT-1

NUMERICAL QUESTIONS:

Q.1 Two blocks 1 and 2 of mass 2kg and 4kg are kept over a frictionless inclined surface (angle of inclination = 30°). Coefficient of friction between two blocks is $\mu = 0.2$. Friction force on block 1 is equal to (in Newton) -

Q.2 A cylinder of mass 5 kg is kept over a block of mass 10 kg which is kept on a fixed inclined plane. The surface between cylinder and block is rough ($\mu = 0.2$) while that between block and inclined plane is smooth. Friction force acting on cylinder is -

Two blocks of mass 2kg each are kept over fixed frictionless inclined plane as shown. Coefficient of friction between blocks is $\mu = 0.4$ Friction force on block 2 is –

Q.4 Two blocks A and B, each of mass m = 2kg are connected to the ends of a ideal spring of force constant $k = 1000 \text{ Nm}^{-1}$ and this system is placed on rough floor. Coefficient of friction between these blocks and floor is $\mu = 0.5$. Block B is pressed towards left so that spring gets compressed. Then the initial minimum compression of spring in cm such that block A leaves contact with the wall when system is released is $(g = 10 \text{ m/s}^2)$

В 0000

Q.5 Two blocks of mass 2 kg and 4 kg are connected through a massless inextensible string. Coefficient of friction between 2 kg block and ground is 0.4 and between 4 kg block and ground is 0.6. Two forces $F_1 = 10$ N and $F_2 = 20$ N are applied on the block as shown in figure. Friction force (in N)acting on 4 kg block minus 10 N is

Q.3

- Q.6 A car begins to move at time t = 0 and then accelerates along a straight track with a velocity given by $V(t) = 2t^2 \text{ ms}^{-1}$ for $0 \le t \le 2$, where t is time in second. After the end of acceleration, the car continues to move at a constant speed. A small block initially at rest on the floor of the car begins to slip at t = 1 s and stops slipping at t = 3 s. The coefficient of static and kinetic friction between the block and the floor are μ_s and μ_k respectively. Find the value of $\frac{3\mu_s}{...}$
- **Q.7** A 40 kg wooden crate is being pushed across a wooden floor with a force of 160 N. If $\mu_k = 0.3$, find the acceleration of the crate. (g = 10 m/s²)
- **Q.8** A car with its brakes locked is on a horizontal plane. It will remain stationary fill the angle made by plane with horizontal is 45°. What is the coefficient of static friction of rubber tires on dry concrete?

PRERNA EDUCATION H-81, South Extension-1, New Delhi-110049