ASSIGNMENT-1

NUMERICAL QUESTIONS:

Q. 1 A pendulum of length ℓ is given a horizontal velocity $\sqrt{\operatorname{kg} \ell}$ at the lowest point of vertical circular path as shown. In the subsequent motion the string gets slag at a certain point and the pendulum bob strikes the point of suspensión then the value of k is -

Q. 2 A 1500 kg car enters a section of curved road in the horizontal plane and slows down at a uniform rate from a speed of $100 \mathrm{~km} / \mathrm{hr}$ at A to a speed of $50 \mathrm{~km} / \mathrm{hr}$ as it passes C. The radius of curvature of the road at A is 400 m and at C is 80 m . The total horizontal force exerted by the road on tyres at position C is. N .

Q. 3 A pendulum of length ℓ is given a horizontal velocity $\sqrt{\mathrm{kg} \ell}$ at the lowest point of vertical circular path as shown. In the subsequent motion the string gets slag at a certain point and the pendulum bob strikes the point of suspensión then the value of k is -

Q. 4 A sphere of mass $m=0.5 \mathrm{~kg}$ carrying positive charge $\mathrm{q}=110 \mu \mathrm{C}$ is connected with a light, flexible and inextensible spring of length $r=60 \mathrm{~cm}$ and whirled in a vertical circle. If a vertically upwards electric field of strength $\mathrm{E}=10^{5} \mathrm{~N} / \mathrm{C}$ exists in the space then the minimum velocity of sphere in m / s required at highest point so that it may just complete the circle is ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
Q. 5 A small bead of mass m can move on a smooth circular wire (radius R) under the action of a force $\mathrm{F}=$ $\frac{\mathrm{Km}}{\mathrm{r}^{2}}$ directed $(\mathrm{r}=$ position of bead from $\mathrm{P} \& \mathrm{~K}=$ constant $)$ towards a point P within the circle at a distance
$\mathrm{R} / 2$ from the centre. What should be the minimum velocity (in m / s) of bead at the point of the wire nearest the centre of force (P) so that bead will complete the circle (Take $\frac{\mathrm{k}}{3 \mathrm{R}}=8$ unit)

Q. 6 A highway curve with a radius of 750 m is banked properly for a car traveling 120 kph . If a 1590 kg car takes the turn at a speed of 230 kph , how much sideways force must the tires exert against the road if the car does not skid?
Q. 7 What is the minimum radius of a circle along which a cyclist can ride with a velocity $18 \mathrm{~km} / \mathrm{hr}$ if the coefficient of friction between the tyres and the road is $\mu=0.5$ (take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

