

Chapter 2 Electrostatic Potential and

Capacitance

Assignment 4

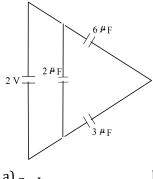
Class 12

ERNA EDUCATION

Subject: PHYSICS Class: XIIth **DPP No.: 4** Date:

Topic:-ELECTROSTATIC POTENTIAL AND CAPACITANCE

1. If the potential of a capacitor having capacity 6µF is increased from 10 V to 20 V, then increase in its energy is


a) 12×10^{-6} I

b) 9×10^{-4} I

c) 4.5×10^{-6} J

d) 2.25×10^{-6} J

The total energy stored in the condenser system shown in the figure will be

a) _{2 μ}J

b) $_{4~\mu J}$

d) 16 µJ

Two free protons are separated by a distance of 1 Å. If one proton is kept at least and the other is released, the kinetic energy of second proton when at infinite sparation is

a) 23.0×10^{-19} I

b) 11.5×10^{-19} J

c) 2.3×10^{-19} I

d) Zero

The work done in bringing a unit positive charge from infinity distance to a point at distance *X* from a positive charge Q is W. Then, the potential ϕ at the point is

b) W

d) wo

An electric field is given by $\vec{E} = (y\hat{i} + x\hat{j})$ m NC⁻¹. The work done in moving a 1 C charge from

 $\vec{r}_{A} = (2\hat{i} + 2\hat{j}) \text{ m to } \vec{r}_{B} = (4\hat{i} + 2\hat{j}) \text{ m is}$

a) +81

b) + 4I

c) Zero

 $^{\rm d)}$ $_{\rm -4}$ J

The equivalent capacity between points *A* and *B* in figure will be, while capacitance of each capacitor is 3 µF.

PRERNA EDUCATION

	a) _{2 μ} F	b) _{4 μ} F	c) _{7 μF}	d) $_{9~\mu F}$
7.	27 identical drops of mercury are charged simultaneously to the same potential of 10 V ear Assuming drops to be spherical, if all the charged drops are made to combine to form one drop, then the potential of larger drop would be			
	a) 45 V	b) 135	c) 270 V	d) 90 V
8.	A soap bubble is charged to a potential of 16V. Its radius is, then doubled. The potential of the bubble now will be			
	a) 16V	b) 8V	c) 4V	d) 2V
9.	A 10 μF capacitor is charges to 500 V and its plates are joined together through a resistance of 10 Ω . The heat produced in the resistance is			
	a) 500 J	b) 125 J	c) 250 J	d) 1.25 J
10.	Work done in carrying a charge \mathcal{Q}' once round the circle of radius r with a charge \mathcal{Q} at the centre is			
	a) $\frac{1}{4\pi\epsilon_0} \frac{Q}{r}$	b) $\frac{1}{4\pi\varepsilon_0} \frac{QQ'}{r}$	c) Zero	d) $\frac{QQ'}{2r}$
11.	An automobile spring extends 0.2 m for 5000 N load. The ratio of potential energy stored in this spring when it has been compressed by 0.2 m to the potential energy stored in a $10\mu F$ capacitor at a potential difference of $10000V$ will be			
	a) 1/4	b) 1	c) 1/2	d) 2
12.	A parallel plate capacitor of capacitance 100 pF is to be constructed by using paper sheets of 1 mm thickness as dielectric. If the dielectric constant of paper is 4, the number of circular metal foils of diameter 2 cm each required for the purpose is			
	a) 40	b) 20	c) 30	d) 10
13.	Two capacitor of capacity $6\mu F$ and $12\mu F$ in series are connected by potential of 150 V. the potential of capacitor of capacity $12\mu F$ will be			
	a) 25 V	b) 50 V	c) 100 V	d) 150 V
14.	 A parallel plate capacitor or capacity C₀ is charged to a potential V₀. I. The energy stored in the capacitor when the battery is disconnected and the plate separation is doubled is E₁. II. The energy stored in the capacitor when the charging battery is kept connected and the separation between the capacitor plates is doubled is E₂. Then E₁/E₂ value is 			
	a) $\frac{4}{1}$	b) $\frac{3}{2}$	c) 2	$d)\frac{1}{2}$
15.	5. The potential at a point P which is forming a corner of a square of side 93mm with charg $Q_1 = 33 \text{ nC}, Q_2 = -51 \text{ nC}, Q_3 = 47 \text{ nC}$ located at the other three corners is nearly			
	a) 16kV	b) 4kV	c) 400V	d) 160V

PRERNA EDUCATION

- 16. If the plates of a parallel plate capacitor are not equal in area, then quantity of charge
 - a) On the plates will be same but nature of charge will differ
 - b) On the plates as well as nature of charge will be different
 - c) On the plates will be different but nature of charge will be same
 - d) As well as nature of charge will be same
- 17. Two capacitors of capacitance 2 μF and $4\mu F$ respectively are connected in series. The combination is connected across a potential difference of 10 V. The ratio of energies stored by capacitors will be

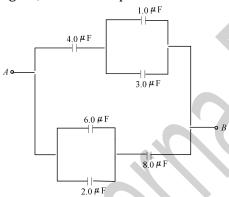
a) $1:\sqrt{2}$

b) 2:1

c) 1:4

d)4:1

18. A $20\mu F$ capacitor is connected to 45 V battery through a circuit whose resistance is 2000Ω . What is the final charge on the capacitor?


a) 9×10^{-4} C

b) 9.154×10^{-4} C

c) 9.8×10^{-4} C

d) None of these

19. The equivalent capacitance between points *A* and *B* for the combination of capacitors shown in figure, where all capacitances are in microfarad is

a) 6.0 μF

b) 4.0 μF

c) 2.0 uF

 $^{d)}_{3.0 \mu F}$

20. An air filled parallel plate capacitor has a capacity of 2pF. The separation of the plates is doubled and the interspace between the plates is filled with wax. If the capacity is increased to 6 pF, the dielectric constant of wax is

a) 2

b)3

c) 4

d)6