

Chapter 1 Unit and Measurements

Assignment 3

Class 11

PRERNA EDUCATION

CLASS : XITH DATE : SUBJECT : PHYSICS DPP NO. : 3

Topic :- UNITS AND MEASUREMENTS

The dimensions of $\frac{a}{b}$ in the equation $p = \frac{a - t^2}{bx}$ where p is pressure, x is distance and t is time, 1. are a) $[M^{2}LT^{-3}]$ b) $[MT^{-2}]$ c) $[LT^{-3}]$ d) $[ML^{3}T^{-1}]$ The focal length of a mirror is given by $\frac{1}{t} = \frac{1}{u} + \frac{1}{v}$ where *u* and *v* represent object and image 2. `distances respectively. The maximum relative error in f is b) $\frac{\Delta f}{f} = \frac{1}{\Delta u/u} + \frac{1}{\Delta v/v}$ a) $\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v}$ d) $\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v} + \frac{\Delta u}{u+v} + \frac{\Delta v}{u+v}$ c) $\frac{\Delta f}{f} = \frac{\Delta u}{v} + \frac{\Delta v}{v} - \frac{\Delta(u+v)}{v+v}$ 3. Which of the following relation is wrong b) 1 watt \times 1 sec = 1 joule a) 1 ampere \times 1 ohm = 1 volt c) $1 \times \text{newton per coulomb} = 1 \text{ volt per meter } d) 1 \text{ coulomb} \times 1 \text{ volt} = 1 \text{ watt}$ The unit of self inductance of a coil is 4. a) Farad b) Henry c) Weber d)Tesla 5. Out of the following four dimensional quantities, which one qualifies to be called a dimensional constant? a) Acceleration due to gravity b) Surface tension of water c) Weight of a standard kilogram mass d) The velocity of light in vacuum The radius of the proton is about 10^{-15} m. The radius of the observable universe is 10^{26} m. 6. identify the distance which is half-way between these two extremes on a logarithmic scale. a) 10^{21} m b) 10⁶m c) 10^{-6} m d) 10^{0} m The position of a particle at time t is given by the equation $x(t) = \frac{v_0}{4} (1 - e^{At})$, $v_0 = \text{constant}$ 7. and A > 0. Dimensions of v_0 and A respectively are a) $[M^0LT^0]$ and $[M^0L^0T^{-1}]$ b) $[M^0LT^{-1}]$ and $[M^0LT^{-2}]$ c) $[M^0LT^{-1}]$ and $[M^0L^0T]$ d) $[M^0LT^{-1}]$ and $[M^0L^0T^{-1}]$

Address: H-81, South Extension Part-1, New Delhi-110049 II www.prernaeducation.co.in II 9205365731

PRERNA EDUCATION

8.	One nanometre is equa a) 10 ⁹ mm	ll to b) 10 ⁻⁶ cm	c) 10 ⁻⁷ cm	d) 10 ⁻⁹ cm		
9.	$[ML^2T^{-3}A^{-2}]$ is the din a) Electric resistance	nensional formula of b) Capacity	c) Electric potential	d)Specific resistance		
10.	The dimensions of Plana) $\left[M^2L^2T^{-2}\right]$	nck's constant are b) [MLT ⁻²]	c) $[ML^2T^{-2}]$	d) $[ML^2T^{-1}]$		
11.	If the length of rod A is 3.25 ± 0.01 cm and that of B is 4.19 ± 0.01 cm then the rod B is longer than rod A by					
	a) 0.94 ± 0.00 cm	b) 0.94 ± 0.01 <i>cm</i>	c) 0.94 ± 0.02 <i>cm</i>	d) $0.94 \pm 0.005 \ cm$		
12.	The dimensions of $e^2/4\pi\epsilon_0 hc$, where e , ϵ_0 , h and c are electronic charge, electric permittive					
	Planck's constant and v a) $\left[M^{0}L^{0}T^{0}\right]$	b) [ML ⁰ T ⁰]	m respectively, are c) [M ⁰ LT ⁰]	d) $\left[M^0 L^0 T^1 \right]$		
13.	The length, breadth and thickness of a block are given by $l = 12cm$, $b = 6 cm$ and $t = 2.45cm$					
	The volume of block ac a) $1 \times 10^2 \ cm^3$	cording to the idea of signal b) $2 \times 10^2 \ cm^3$	gnificant figures should c) $1.763 \times 10^2 \ cm^3$	be d)None of tehse		
14.	A physical quantity A is related to four observables a, b, c and d as follows $A = \frac{a^2 b^3}{c \sqrt{d}}$					
	The percentage errors of measurement in <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> are 1%, 3%, 2% and 2% respectively.					
	a) 12%	b) 7%	? с) 5%	d)14%		
15.	Ampere-hour is the unit	it of				
	a) Quantity of charge	b) Potential	c) Energy	ajcurrent		
16.	The dimensions of 1/2 a) Energy density (ener c) Power	εE ² are same as rgy per unit volume)	b) Energy d) None of the above			
17.	The velocity of a partic a) <i>L</i>	le (v) at an instant t is g b) LT^{-1}	iven by $v = at + bt^2$ the c) LT^2	dimension of <i>b</i> is d) LT^{-3}		
18.	Wavelength of ray of lig a) 6 <i>micron</i>	ght is 0.00006 m. It is eq b) 60 micron	ual to c) 600 <i>micron</i>	d)0.6 micron		

PRERNA EDUCATION

19.	. The unit of surface tension in SI system is						
	a) <i>Dyne/cm</i> ²	b) <i>Newton /m</i>	c) Dyne/cm	d) <i>Newton/m</i> ²			
20.	Dimensions of $\frac{1}{\mu_0\epsilon_0}$, wh a) $[lT^{-1}]$	here symbols have the b) $[L^{-1}T]$	ir usual meaning, are c) $[L^{-2}T^2]$	d) $[L^2 T^{-2}]$			