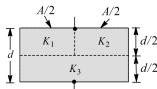


Chapter 2 Electrostatic Potential and

Capacitance

Assignment 3

Class 12


RNA EDUCATION

Subject: PHYSICS Class: XIIth **DPP No.: 3** Date:

Topic:-ELECTROSTATIC POTENTIAL AND CAPACITANCE

1. A parallel plate capacitor of area A, plate separation d and capacitance C is filled with three different dielectric materials having dielectric constants K_1 , K_2 and K_3 as shown. If a single dieletric material is to be used to have the same capacitance C is this capacitors, then its dielectric constant *K* is given by

a)
$$\frac{1}{K} = \frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{2K_3}$$
 b) $\frac{1}{K} = \frac{1}{K_1 + K_2} + \frac{1}{2K_3}$ c) $K = \frac{K_1K_2}{K_1 + K_2} + 2K_3$ d) $K = K_1 + K_2 + 2K_3$

- Out of two copper spheres of the same size, x is hollow while y is solid. If they are charged at the same potential, what can be said about the charges on them?
 - a) Charge on both the spheres is zero
- b) Charge on both the spheres is equal
- c) Sphere y will have more charge
- d) Sphere *x* will have more charge
- A hollow metallic sphere of radius R is given a charge Q. Then, the potential at the centre is
 - a) Zero
- c) $\frac{1}{4\pi\varepsilon_0}$. $\frac{2Q}{R}$
- d) $\frac{1}{4\pi\varepsilon_0}$. $\frac{Q}{2R}$
- 4. On moving a charge of 20 C by 2cm, 2J of work is done, then the potential difference between the points is
 - a) 0.1V
- b)8V

c) 2V

- d) 0.5V
- Three capacitors each of capacitance 1 µF are connected in parallel. To the combination, a fourth capacitor of capacitance 1 μF is connected in series. The resultant capacitance of the system is
 - a) _{4 uF}
- b) (4/3)uF
- c) 2 uF
- d) $(3/4)\mu F$
- 6. Number of electric lines of force from 0.5 C if positive charge in a dielectric medium of constant 10 is
 - a) 5.65×10^9
- b) 1.13×10^{11} c) 9×10^9
- d) 8.85×10^{-12}

PRERNA EDUCATION

7.	A capacitor of capacitance $10\mu F$ charged to $100V$ is connected to an uncharged capacitor. The effective potential now is $40~V$. The capacitance of uncharged capacitor is			
	a) _{12μ} F	b) _{15 μ} F	c) _{25 µF}	d) $_{30~\mu F}$
8.	If dielectric is inserted is constant is	in charged capacitor (ba	attery removed), then q	uantity that remains
	a) Capacitance	b) Potential	c) Intensity	d) Charge
9.	A uniform electric field pointing in positive x -direction exists in a region. Let A be the origin, B be the point on the x -axis at x =+1 cm and C be the point on the y -axis at y =+1 cm. them the potentials at the points A , B and C satisfy the condition			
	a) $V_A < V_B$	b) $V_A > V_B$	c) $V_A < V_C$	$^{\mathrm{d})}V_{A} > V_{C}$
10.	conductor. the energy g	given to the conductor d	_	arged through a d) 4.2 J
	^{a)} 1.6×10^{-2} J	b) 3.2 J	c) 1.6 J	u) 4.2 j
11.	capacitance C is occupi	ed by it. The new capaci		
	a) 2 <i>C</i>	b) <u>C</u>	c) $\frac{(1+K)C}{2}$	$^{\mathrm{d})}2C(1+K)$
12.	If dielectric constant and dielectric strength be denoted by K and X respectively, then a material suitable for use as a dielectric in a capacitor must have			
	a) High K and high X	b) High K and low X	c) Low K and high X	d) Low K and low X
13.	Two capacitors each of capacity $2\mu F$ are connected in parallel. If they are connected to $100V$ battery ,then energy stored in them is			
	a) 0.02 J	b) 0.04 J	c) 0.01 J	d) 200 J
14.	For the circuit shown find $S_1 \circ V_1 = 30 \lor S_3 \circ V_2 = 2$ $C_1 = 2 \text{ pF} C_2 = 3$	0V S ₂ P	wing statements is true?	
	a) With S_1 closed, $V_1 =$	15 V, $V_2 = 20 \text{ V}$	b) With S_3 closed, $V_1 =$	$V_2 = 20 \text{ V}$
	c) With S_1 and, S_3 closed, $V_1 = V_2 = 0$ d) With S_1 and S_3 closed, $V_1 = 30$ V, $V_2 = 30$			d, $V_1 = 30 \text{ V}, V_2 = 20 \text{ V}$
15.	An infinite line charge produces a field of 9×10^4 NC ⁻¹ at a distance of 2 cm. the linear density			2 cm. the linear density
	a) $2 \times 10^{-7} \text{Cm}^{-1}$	b) 10^{-7} Cm $^{-1}$	c) $9 \times 10^4 \text{Cm}^{-1}$	d) None of these
16.	Three capacitors of capacitance $1\mu F$, $2\mu F$ and $3\mu F$ are connected in series and a potential difference of $11~V$ is applied across the combination. Then, the potential difference across the plate of $1\mu F$ capacitor is			
	a) 2 V	b) 4 V	c) 1 V	d) 6 V

RERNA EDUCATION

17.	. Two equally charged small balls placed at a fixed distance experience a force F . A similar		
	uncharged ball after touching one of them is placed at the middle point between the two balls.		
	The force experienced by this ball is		

a) $\frac{F}{2}$

b) _F

c) $_{2F}$

 $d)_{4F}$

18. In a capacitor of capacitance $20\mu F$ the distance between the plates is 2 mm. If a dielectric slab of width 1 mm and dielectric constant 2 is inserted between the plates, then the new capacitance will be

a) 22 µF

b) 26.6 μF

c) 52.2 uF

d) 13 Mf

19. Electric field on the axis of a small electric dipole at a distance r is \vec{E}_1 and \vec{E}_2 at a distance of 2ron a line of perpendicular dissector. Then

 $a)\vec{E}_2 = -\frac{\vec{E}_1}{g}$

b) $\vec{E}_2 = -\frac{\vec{E}_1}{16}$ c) $\vec{E}_2 = -\frac{\vec{E}_1}{4}$

20. Two identical air core capacitors are connected in series to a voltage source of 15 V. If one of the capacitors is filled with a medium of dielectric constant 4, the new potential across this capacitor is

a) 5 V

b)8 V

d) 12 V