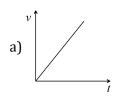
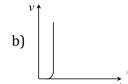


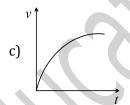
Chapter 1 Motion in a Straight Line

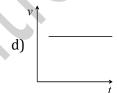
Assignment 3

Class 11

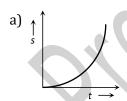

ERNA EDUCATION

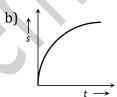

SUBJECT: PHYSICS CLASS: XITH

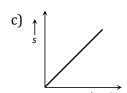

DPP NO.: 3 DATE:

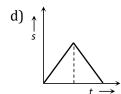

Topic:-MOTION IN A STRAIGHT LINE

1. An object is dropped from rest. Its *v-t* graph is








- 2. A particle is thrown vertically upwards. If it velocity at half of the maximum height is $10 \, m/sec$, then maximum height attained by it is (Take $g = 10 \text{ m/sec}^2$)
 - a)_{8 m}
- b) $_{10 \, m}$
- d) $_{16 \, m}$

Which graph represents the uniform acceleration

- What is the relation between displacement, time and acceleration in case of a body having uniform acceleration
 - a) $S = ut + \frac{1}{2}ft^2$
- b) S = (u + f) t c) $S = v^2 2fs$
- d) None of these
- The acceleration 'a' in m/s^2 of a particle is given by $a = 3t^2 + 2t + 2$ where t is the time. If the particle starts out with a velocity u = 2m/s at t = 0, then the velocity at the end of 2 *seconds* is
 - a) $12 \, m/s$
- b) $18 \, m/s$
- c) $27 \, m/s$
- d) $_{36 \, m/s}$

PRERNA EDUCATION

- 6. Two bodies are thrown simultaneously from a tower with same initial velocity v_0 : one vertically upwards, the other vertically downwards. The distance between the two bodies after time t is
 - a) $2v_0t + \frac{1}{2}gt^2$
- b) $_{2v_0t}$
- c) $v_0 t + \frac{1}{2} g t^2$
- $d)_{v_0t}$
- 7. An aeroplane files 400 m north and 300 m south and then files 1200 m upwards then net displacement is
 - a) 1200 m
- b) 1300 m
- c) $_{1400 \, m}$
- d) $_{1500\,n}$
- 8. The displacement of a particle undergoing rectilinear motion along the x-axis is given by $x = (2t^2 + 21t^2 + 60t + 6)$. The acceleration of the particle when its velocity is zero is
 - a) 36ms^{-2}
- b) $_{9ms^{-2}}$
- c) -9ms^{-2}
- $^{\rm d})_{-18\rm ms^{-2}}$
- 9. A river is flowing from W to E with a speed of $5 \, m/min$. A man can swim in still water with a velocity $10 \, m/min$. In which direction should the man swim so as to take the shortest possible path to go to the south
 - a) 30° with downstream
 - b) 60° with downstream
 - c) 120° with downstream
 - d) South
- 10. The numerical ratio of displacement to the distance covered is always
 - a) Less than one

b) Equal to one

c) Equal to or less than one

- d) Equal to or greater than one
- 11. From the top of tower, a stone is thrown up. It reaches the ground in t_1 second. A second stone thrown down with the same speed reaches the ground in t_2 second. A third stone released from rest reaches the ground in t_3 second. Then

RNA EDUCATION

a)
$$t_3 = \frac{(t_1 + t_2)}{2}$$
 b) $t_3 = \sqrt{t_1 t_2}$ c) $\frac{1}{t_3} = \frac{1}{t_1} - \frac{1}{t_2}$ d) $t_3^2 = t_2^2 - t_1^2$

b)
$$t_3 = \sqrt{t_1 t_2}$$

c)
$$\frac{1}{t_3} = \frac{1}{t_1} - \frac{1}{t_2}$$

$$d) t_3^2 = t_2^2 - t_1^2$$

- 12. One car moving on a straight road covers one third of the distance with $20 \, km/hr$ and the rest with $60 \, km/hr$. The average speed is
 - a) 40 km/hr
- b) 80 km/hr
- c) $46\frac{2}{3} \, km/hr$
- $d)_{36 \, km/hr}$
- 13. A particle starts from rest, acceleration at $2 m/s^2$ for 10 s and then goes with constant speed for 30 s and then decelerates at $4 m/s^2$ till it stops. What is the distance travelled by it
 - a) 750 m
- b) 800 m
- c) $_{700 m}$

- 14. Acceleration of a particle changes when
 - a) Direction of velocity changes
- b) Magnitude of velocity changes

c) Both of above

- d) Speed changes
- 15. A cat moves from X to Y with a uniform speed v_u and returns to X with a uniform speed v_d . The average speed for this ground trip is

a)
$$-\frac{2v_dv_u}{v_d+v_u}$$

b)
$$\sqrt{v_u v_d}$$

c)
$$\frac{v_d v_u}{v_d + v_u}$$

d)
$$\frac{v_u + v_a}{2}$$

- 16. A boat takes two hours to travel 8 km and back in still water. If the velocity of water 4 kmh⁻¹, the time taken for going ups tream 8km and coming back is
 - a) 2h

b) 2 h 40 min

c) 1 h 20 min

- d) Cannot be estimated with the information
- 17. A person travels along a straight road for the first half time with a velocity v_1 and the next half time with a velocity v_2

The mean velocity V of the man is

a)
$$\frac{2}{V} = \frac{1}{v_1} + \frac{1}{v_2}$$
 b) $V = \frac{v_1 + v_2}{2}$ c) $V = \sqrt{v_1 v_2}$

b)
$$V = \frac{v_1 + v_2}{2}$$

c)
$$V = \sqrt{v_1 v_2}$$

$$^{\mathrm{d})}V = \sqrt{\frac{v_1}{v_2}}$$

18. A particle is projected with velocity v_0 along x - axis. The deceleration on the particle is proportional to the square of the distance from the origin i.e., $a=-ax^2$. The distance at which the particle stops is

RNA EDUCATION

b) $\left(\frac{3v_0}{2\alpha}\right)^{\frac{1}{3}}$ c) $\sqrt{\frac{3v_0^2}{2\alpha}}$

d) $\left(\frac{3v_0^2}{2\alpha}\right)^{\frac{1}{3}}$

19. Two balls are dropped to the ground from different heights. One ball is dropped 2 s after the other but they both strike the ground at the same time. If the first ball takes 5 s to reach the ground, then the difference in initial heights is $(g = 10 \text{ ms}^{-2})$

a) 20 m

b)80 m

c) 170 m

d)40 m

20. A body starts from origin and moves along x-axis such that at any instant velocity is $v_t = 4t^3$ – 2t where t is in second and v_t in ms⁻¹. The acceleration of the particle when it is 2m from the origin is

a) 28ms⁻²

b) 22ms^{-2}

c) _{12ms}

d)_{10ms}-2