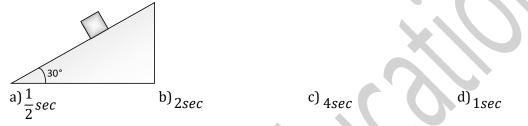


Chapter 1 Motion in a Straight Line


Assignment 2

Class 11

- 5. A ball is dropped on the floor from a height of 10 *m*. It rebounds to a height of 2.5*m*. If the ball is in contact with the floor for 0.01 sec, the average acceleration during contact is
 - a) $_{2100 m/sec^2}$ downwards b) $_{2100 m/sec^2}$ upwards
 - c) 1400 m/sec² d) 700m/sec²

6. The time taken by a block of wood (initially at rest) to slide down a smooth inclined plane 9.8 m long (angle of inclination is 30°) is

- 7. From the top of a tower, a particle is thrown vertically downwards with a velocity of 10 *m* /sec. The ratio of the distances, covered by it in the 3rd and 2nd seconds of the motion is (Take $g = 10 m/s^2$)
 - a) $_{5:7}$ b) $_{7:5}$ c) $_{3:6}$ d) $_{6:3}$
- 8. A particle moves for 20 s with velocity 3 ms^{-1} and then moves with velocity 4 ms^{-1} for another 20 s and finally moves with velocity 5 ms^{-1} for next 20 s. What is the average velocity of the particle?

a) $_{3 \text{ ms}^{-1}}$ b) $_{4 \text{ ms}^{-1}}$ c) $_{5 \text{ ms}^{-1}}$ d) Zero

9. An express train is moving with a velocity v_1 . Its driver finds another train is moving on the same track in the same direction with velocity v_2 . To escape collision, driver applies a retardation *a* on the train. The minimum time of escaping collision will be

a) $t = \frac{v_1 - v_2}{a}$ b) $t = \frac{v_1^2 - v_2^2}{2}$ c) None d) Both

10. The initial velocity of a particle is u (at t = 0) and the acceleration f is given by at. Which of the following relation is valid

a) $v = u + at^2$ b) $v = u + a\frac{t^2}{2}$ c) v = u + at d) v = u

- 11. A particle travels 10*m* in first 5 *sec* and 10*m* in next 3 *sec*. Assuming constant acceleration what is the distance travelled in next 2 *sec*
 - a) $_{8.3 m}$ b) $_{9.3 m}$ c) $_{10.3 m}$ d) None of above
- 12. A bus begins to move with an acceleration of 1 ms^{-2} . A man who is 48 m behind the bus starts
running at 10 ms⁻¹ to catch the bus. The man will be able to catch the bus after
a) 6 sb) 5 sc) 3 sd) 8 s
- 13. The acceleration of a particle is increasing linearly with time t as bt. The particle starts from the origin with an initial velocity v_0 . The distance travelled by the particle in time t will be
 - a) $v_0 t + \frac{1}{3}bt^2$ b) $v_0 t + \frac{1}{3}bt^3$ c) $v_0 t + \frac{1}{6}bt^3$ d) $v_0 t + \frac{1}{2}bt^2$
- 14. A bullet fired into a fixed wooden block loses half of its velocity after penetration 40 cm. it comes to rest after penetrating a further distance of

a) $\frac{22}{3}$ cm b) $\frac{40}{3}$ cm c) $\frac{20}{3}$ cm d) $\frac{22}{5}$ cm

- 15. A particle is moving on a straight line path with constant acceleration directed along the direction of instantaneous velocity. Which of the following statements are false about the motion of particle?
 - a) Particle may reverse the direction of motion
 - b) Distance covered is not equal to magnitude of displacement
 - c) The magnitude of average velocity is less than average speed
 - d) All of the above
- 16. A body, thrown upwards with some velocity reaches the maximum height of 50 *m*. Another body with the double the mass thrown up with double the initial velocity will reach a maximum height of

```
a) 100 m b) 200 m c) 300 m d) 400 m
```

17. A body is thrown vertically up with a velocity *u*. It passes three points *A*, *B* and *C* in its upward journey with velocities $\frac{u}{2}$, $\frac{u}{3}$ and $\frac{u}{4}$ respectively. The ratio of the separations between points A and B between B and C, ie, $\frac{AB}{BC}$ is c) $\frac{10}{7}$ d) $\frac{20}{7}$ a) 1 b)2 18. A train started from rest from a station and accelerated at 2 ms^{-2} for 10 s. Then, it ran at constant speed for 30 s and thereafter it decelerated at 4 ms⁻² until it stopped at the next station. The distance between two stations is a) 650 m b)700 m c) 750 m d)800 m 19. A ball is dropped downwards. After 1 second another ball is dropped downwards from the same point. What is the distance between them after 3 seconds b)₂₀ m c) ₅₀ m d) 9.8 ma) 25 m20. You drive a car at seed of 70 *km/hr* in a straight road for 8.4 *km*, and then the car runs out of petrol. You walk for 30 min to reach a petrol pump at a distance of 2 km. The average velocity from the beginning of your drive till you reach the petrol pump is b) 35 *km/hr* d) 18.6 *km/hr* a) 16.8 km/hr c) $64 \, km/hr$

Space for Rough Work