Chapter 1 Unit and Measurements

Assignment 1

Class 11

PRERNA EDUCATION

Topic :- UNITS AND MEASUREMENTS

1. In an experiment, to measure the height of a bridge by dropping stone into water underneath, if the error in measurement of time is $0.1 s$ at the end of $2 s$, then the error in estimation of height of bridge will be
a) 0.49 m
b) 0.98 m
c) 1.96 m
d) 2.12 m
2. The dimension of k in the equation $W=\frac{1}{2} k x^{2}$ is
a) $\left[\mathrm{ML}^{0} \mathrm{~T}^{-2}\right]$
b) $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$
c) $\left[\mathrm{MLT}^{-2}\right]$
d) $\left[\mathrm{ML}^{0} \mathrm{~T}^{-1}\right]$
3. A body of mass $m=3.513 \mathrm{~kg}$ is moving along the x-axis with a speed of $5.00 \mathrm{~ms}^{-1}$. The magnitude of its momentum is recorded as
a) $17.6 \mathrm{~kg} \mathrm{~ms}^{-1}$
b) $17.565 \mathrm{~kg} \mathrm{~ms}^{-1}$
c) $17.56 \mathrm{~kg} \mathrm{~ms}^{-1}$
d) $17.57 \mathrm{~kg} \mathrm{~ms}^{-1}$
4. The dimensional formula for the modulus of rigidity is
a) $M L^{2} T^{-2}$
b) $M L^{-1} T^{-3}$
c) $M L^{-2} T^{-2}$
d) $M L^{-1} T^{-2}$
5. The unit of physical quantity obtained by the line intergral of electric field is
a) NC^{-1}
b) Vm^{-1}
c) JC^{-1}
d) $C^{2} N^{-1} m^{-2}$
6. The dimensions of gravitational constant G and the moment of inertia are respectively
a) $\left[\mathrm{ML}^{3} \mathrm{~T}^{-2}\right] ;\left[\mathrm{ML}^{2} \mathrm{~T}^{0}\right]$
b) $\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right] ;\left[\mathrm{ML}^{2} \mathrm{~T}^{0}\right]$
c) $\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right] ;\left[\mathrm{M}^{-1} \mathrm{~L}^{2} \mathrm{~T}\right]$
d) $\left[\mathrm{ML}^{3} \mathrm{~T}^{-2}\right] ;\left[\mathrm{M}^{-1} \mathrm{~L}^{2} \mathrm{~T}\right]$
7. Unit of stress is
a) N / m
b)
$N-m \mathrm{c})$
N / m^{2}
d) $N-m^{2}$
8. Crane is British unit of volume (one crane $=170.4742$). convert crane into SI units.
a) $0.170474 \mathrm{~m}^{3}$
b) $17.0474 \mathrm{~m}^{3}$
c) $0.00170474 \mathrm{~m}^{3}$
d) $1704.74 \mathrm{~m}^{3}$
9. SI unit of intensity of wave is
a) $\mathrm{Jm}^{-2} \mathrm{~s}^{-1}$
b) $\mathrm{Jm}^{-1} \mathrm{~s}^{-2}$
c) Wm^{-2}
d) $\mathrm{J} \mathrm{m}^{-2}$
10. If F denotes force and t time, then in equation $F=a t^{-1}+b t^{2}$, the dimensions of a and b respectively are

PRERNA EDUCATION

a) $\left[\mathrm{LT}^{-4}\right]$ and $\left[\mathrm{LT}^{-1}\right]$
b) $\left[\mathrm{LT}^{-1}\right]$ and $\left[\mathrm{LT}^{-4}\right]$
c) $\left[\mathrm{MLT}^{-4}\right]$ and $\left[\mathrm{MLT}^{-1}\right]$
d) $\left[\mathrm{MLT}^{-1}\right]$ and $\left[\mathrm{MLT}^{-4}\right]$
11. If the constant of gravitation (G), Plank's constant (h) and the velocity of light (c) be chosen as fundamental units. The dimension of the radius of gyration is
a) $h^{1 / 2} c^{-3 / 2} G^{1 / 2}$
b) $h^{1 / 2} c^{3 / 2} G^{1 / 2}$
c) $h^{1 / 2} c^{-3 / 2} G^{-1 / 2}$
d) $h^{-1 / 2} c^{-3 / 2} G^{1 / 2}$
12. The mass and volume of a body are found to be $500 \pm 0.05 \mathrm{~kg}$ and $1.00 \pm 0.05 \mathrm{~m}^{3}$ respectively. Then the maximum possible percentage error in its density is
a) 6%
b) 3%
c) 10%
d) 5%
13. The unit of Stefan's constant σ is
a) $\mathrm{Wm}^{-2} \mathrm{~K}^{-1}$
b) $W m^{2} K^{-4}$
c) $W \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
d) $\mathrm{Wm}^{-2} \mathrm{~K}^{4}$
14. In the equation $y=a \sin (\omega t+k x$, $)$ the dimensional formula of ω is
a) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
b) $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$
c) $\left[\mathrm{ML}^{0} \mathrm{~T}^{0}\right]$
d) $\left[M^{0} L^{-1} \mathrm{~T}^{0}\right]$
15. The following observations were take for determining surface tension of water by capillary tube method. Diameter of capillary, $D=1.25 \times 10^{-2} \mathrm{~m}$ and rise of water in capillary. $h=$ $1.46 \times 10^{-2} \mathrm{~m}$
Taking $g=9.80 \mathrm{~ms}^{-2}$ and using the relation $T=(r g h / 2) \times 103 \mathrm{Nm}^{-1}$, what is the possible error in surface tensionT?
a) 2.4%
b) 15%
c) 1.6%
d) 0.15%
16. R and L represent respectively resistance and self inductance, which of the following combinations has the dimensions of frequency
a) $\frac{R}{L}$
b) $\frac{L}{R}$
c) $\sqrt{\frac{R}{L}}$
d) $\sqrt{\frac{L}{R}}$
17. The random error in the arithmetic mean of 100 observations is x; then random error in the arithmetic mean of 4000 observations would be
a) $4 x$
b) $\frac{1}{4} x$
c) $2 x$
d) $\frac{1}{2} x$
18. Which of the following is dimensionally correct
a) Pressure = Energy per unit area
b) Pressure = Energy per unit volume
c) Pressure = Force per unit volume
d) Pressure $=$ Momentum per unit volume per unit time
19. R, L and C represent the physical quantities resistance, inductance and capacitance respectively. Which one of the following combination has dimension of frequency?
a) $\frac{1}{\sqrt{R C}}$
b) $\frac{R}{L}$
c) $\frac{1}{L C}$
d) $\frac{C}{L}$
20. If the length of a rectangle $l=10.5 \mathrm{~cm}$, breadth $b=2.1 \mathrm{~cm}$ and minimum possible measurement by scale $=0.1 \mathrm{~cm}$, then the area is
a) $22.0 \mathrm{~cm}^{2}$
b) $22.1 \mathrm{~cm}^{2}$
c) $22.05 \mathrm{~cm}^{2}$
d) $22 \mathrm{~cm}^{2}$

