

Chapter 1 Motion in a Straight Line

Assignment 1 Solution

Class 11

CLASS : XITH DATE :

(a)

Solutions

SUBJECT : PHYSICS DPP NO. : 1

TOPIC :- MOTION IN A STRAIGHT LINE

2

The equation of motion

$$s = ut + \frac{1}{2} at^2$$

= $0 + \frac{1}{2} at^2 = \frac{1}{2} at^2$

The graph plot is as shown.

3

(b) Let the initial velocity of ball be uTime of rise $t_1 = \frac{u}{g+a}$ and height reached $= \frac{u^2}{2(g+a)}$ Time of fall t_2 is given by $\frac{1}{2}(g-a)t_2^2 = \frac{u^2}{2(g+a)}$ $\Rightarrow t_2 = \frac{u}{\sqrt{(g+a)(g-a)}} = \frac{u}{(g+a)}\sqrt{\frac{g+a}{g-a}}$ $\therefore t_2 > t_1$ because $\frac{1}{g+a} < \frac{1}{g-a}$

4

(b)

$$v = u + at = u + \left(\frac{F}{m}\right)t = 20 + \left(\frac{100}{5}\right) \times 10 = 220 \ m/s$$

5

(d)

(b)

(a)

(b)

- 3+

If t_1 and t_2 are the time, when body is at the same height then,

$$h = \frac{1}{2}gt_1t_2 = \frac{1}{2} \times g \times 2 \times 10 = 10 g$$

6

Relative velocity of one train w. r. t. other = 10 + 10 = 20m/s Relative acceleration=0.3 + 0.2 = $0.5m/s^2$ If train crosses each other then from $s = ut + \frac{1}{2}at^2$ As, $s = s_1 + s_2 = 100 + 125 = 225$ $\Rightarrow 225 = 20t + \frac{1}{2} \times 0.5 \times 0.5 \times t^2 \Rightarrow 0.5t^2 + 40t - 450 = 0$ $\Rightarrow t = \frac{-40 \pm \sqrt{1600 + 4.(005) \times 450}}{1} = -40 \pm 50$ $\therefore t = 10sec$ (Taking +ve value)

7

Distance between the balls = Distance travelled by first ball in 3 seconds – Distance travelled by second ball in 2 seconds = $\frac{1}{2}g(3)^2 - \frac{1}{2}g(2)^2 = 45 - 20 = 25 m$

8

The velocity of balloon at height $h, v = \sqrt{2\left(\frac{g}{8}\right)h}$

When the stone released from this balloon, it will go upward with velocity, $=\frac{\sqrt{gh}}{2}$ (Same as that of balloon). In this condition time taken by stone to reach the ground

Taking the motion from 0 to 2 s $u = 0, a = 3ms^{-2}, t = 2s, v = ?$ $v = u + at = 0 + 3 \times 2 = 6ms^{-1}$ Taking the motion from 2 s to 4 s

9

 $v = 6 + (-3)(2) = 0ms^{-1}$

10

(a)

(a)

$$H_{\max} = \frac{u^2}{2g} \Rightarrow H_{\max} \propto \frac{1}{g}$$

On planet *B* value of *g* is 1/9 times to that of *A*. So value of H_{max} will become 9 times *i.e.* $2 \times 9 = 18$ metre

11

After balling out from point A parachutist falls freely under gravity. The velocity acquired by it will 'v'

From $v^2 = u^2 + 2as = 0 + 2 \times 9.8 \times 50 = 980$ [As u = 0, $a = 9.8m/s^2$, s = 50 m] At point *B*, parachute opens and it moves with retardation of 2 m/s^2 and reach at ground (point *C*) with velocity of 3 m/sFor the part '*BC*' by applying the equation $v^2 = u^2 + 2as$ v = 3m/s, $u = \sqrt{980} m/s$, $a = -2m/s^2$, s = h $\Rightarrow (3)^2 = (\sqrt{980})^2 + 2 \times (-2) \times h \Rightarrow 9 = 980 - 4h$ $\Rightarrow h = \frac{980 - 9}{4} = \frac{971}{4} = 242.7 \approx 243 m$

So, the total height by which parachutist bail out = 50 + 243 = 293 m

12 **(d)**

Acceleration due to gravity is independent of mass of body

13 **(b)**

Distance average speed = $\frac{2v_1v_2}{v_1+v_2} = \frac{2\times2.5\times4}{2.5+4}$ = $\frac{200}{65} = \frac{40}{13} km/hr$

14 **(d)**

 $S \propto u^2$. If *u* becomes 3 times then *S* will become 9 times

 $i.e.9 \times 20 = 180m$

15

(d)

(d)

Average speed =
$$-\frac{\text{Total distance}}{\text{Total time}} = \frac{x}{t_1 + t_2}$$

= $\frac{x}{\frac{x/3}{v_1} + \frac{2x/3}{v_2}} = \frac{1}{\frac{1}{3 \times 20} + \frac{2}{3 \times 60}} = 36 \text{ km/hr}$

16

 $\therefore v = 0 + na \Rightarrow a = v/n$ Now, distance travelled in $n \sec \Rightarrow S_n = \frac{1}{2}an^2$ and distance travelled in $(n-2)\sec \Rightarrow S_{n-2} = \frac{1}{2}a(n-2)^2$ $\therefore \text{ Distance travelled in last 2 seconds,}$ $= S_n - S_{n-2} = \frac{1}{2}an^2 - \frac{1}{2}a(n-2)^2$ $\frac{a}{2}[n^2 - (n-2)^2] = \frac{a}{2}[n + (n-2)][n - (n-2)]$ $= a(2n-2) = \frac{v}{n}(2n-2) = \frac{2v(n-1)}{n}$

17

(c)

When packet is released from the balloon, it acquires the velocity of balloon of value 12 m/s. Hence velocity of packet after 2 *sec*, will be $v = u + gt = 12 - 9.8 \times 2 = -76 m/s$

18 **(b)**

Distance covered =Area enclosed by v - t graph = Area of triangle = $\frac{1}{2} \times 4 \times 8 = 16 m$

19 **(c)**

Mass does not affect maximum height

 $H = \frac{u^2}{2g} \Rightarrow H \propto u^2$, So if velocity is doubled then height will become four times.i.e. $H = 20 \times 4 = 80m$

20

(c)

Distance covered in a particular time is

$$s_n = u + \frac{1}{2}g(2n - 1)$$

 $s_1 = 0 + \frac{1}{g}(2 \times 1 - 1) = \frac{g}{2}$

$$s_2 = 0 + \frac{1}{2}g(2 \times 2 - 1) = \frac{3}{2}g$$

And
$$s_3 = 0 + \frac{1}{2} g(2 \times 3 - 1) = \frac{5}{2} g$$

Hence, the required ration is

$$s_1: s_2: s_3 = \frac{g}{2}: \frac{3}{2}g: \frac{5}{2}g = 1:3:5$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	С	A	В	В	D	В	Α	В	А	А
Q.	11	12	13	14	15	16	17	18	19	20
A .	A	D	В	D	D	D	С	В	С	С