

Chapter 2 Structure Of Atom

Assignment 1

Class 11

PRERNA EDUCATION

CLASS : XIth DATE :

SUBJECT : CHEMISTRY DPP No. : 1

Topic :- STRUCTURE OF ATOM

1.	Mg ²⁺ is isoelectrionic with				
	a) _{Cu²⁺}	b) _{Zn²⁺}	c) _{Na} +	d) Ca ²⁺	
2.	The first orbital of H is represented by :				
	$\psi = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$, where a_0 is Bohr's radius. The probability of finding the electron at a				
	distance <i>r</i> , from the nucleus in the region <i>dV</i> is:				
	a) $\psi^2 dr$	b) $\int \psi^2 4\pi r^2 dv$	c) $\psi^2 4\pi r^2 dr$	d) $\int \psi dv$	
3.	The correct statement about proton is				
	a) It is a nucleus of deuterium		b) It is an ionized hydrogen atom		
	c) It is an ionized hydrogen molecules		d) It is an α - particle		
		20			
4.	The energy ΔE corresponding to intense yellow line of sodium of λ , 589 nm is:				
	a) 2.10 eV	b) 43.37 eV	c) _{47.12 eV}	d) _{2.11 kcal}	
	\sim				
5.	One electron volt is:				
	a) 1.6×10^{-19} erg	b) 1.6×10^{-12} erg	c) 1.6×10^{-8} erg	d) 1.6×10^8 erg	
	0	0	0	U U	
6.	The quantum number that is in no way related to other quantum number is:				
	a) _l	b) _s	c) _n	d) _m	
	t	0			

RNA EDUCATION

The de-Broglie wavelength relates to applied voltage ror α -particles as 7.

a) $\lambda = \frac{12.3A^{\circ}}{\sqrt{V}}$ b) $\lambda = \frac{0.286}{\sqrt{V}}A^{\circ}$ c) $\lambda = \frac{0.101}{\sqrt{V}}A^{\circ}$ d) $\lambda = \frac{0.856}{\sqrt{V}}A^{\circ}$

8. Calculate the wavelength (in nanometer) associated with a proton moving at $1.0 \times 10^3 \text{ms}^{-1}$ (Mass of proton = 1.67×10^{-27} kg and $h = 6.63 \times 10^{-34}$ Js) b) 0.40 nm a) 0.032 nm c) 2.5 nm d) 14.0 nm

9. The number of waves in an orbit are

a)
$$n^2$$
 b) n c) $n-1$ d) $n-2$

10. Which of the following electron transition in hydrogen atom will require largest amount of energy?

b) From n = 2 to n = 3a) From n = 1 to n = 2d) From n = 3 to n = 5c) From $n = \infty$ to n = 1

- 11. The principal quantum number n can have integral values ranging from:
 - c) $_{1 \text{ to } (n = l)}$ d) $_{1 \text{ to } 50}$ b) $1 \text{ to } \infty$ a) 0 to 10
- 12. Electrons will first enter into the set of quantum numbers n = 5, l = 0 or n = 3, l = 2
 - c) n = 3, l = 2d) Data insufficient b) Both possible a) n = 5, l = 0
- 13. The relationship between the energy E_1 of the radiation with a wavelength 8000Å and the energy E_2 of the radiation with a wavelength 16000Å is 15

a)
$$E_1 = 6E_2$$
 b) $E_1 = 2E_2$ c) $E_1 = 4E_2$ d) $E_1 = 1/2E_2$

14. Which combinations of quantum numbers *n*, *l*, *m* and *s* for the electron in an atom does not provide a permissible solution of the wave equation?

b) $_{3, 1, 1, -\frac{1}{2}}$ c) $_{3, 3, 1, -\frac{1}{2}}$ d) $_{3, 2, -2, \frac{1}{2}}$ a) 3, 2, 1, $\frac{1}{2}$

PRERNA EDUCATION

15. What is the lowest energy of the spectral line emitted by the hydrogen atom in the Lyman series? (*h*=Planck's constant, *c*=velocity of light, *R*=Rydberg's constant).

a) <u>5hcR</u>	b) 4 <i>hcR</i>	c) 3hcR	d) 7 <i>hcR</i>
36	3	4	144

16. Which is not electromagnetic radiation?

```
a) Infrared rays b) _{X-rays} c) Cathode rays d) _{\gamma-rays}
```

17. Which one of the following sets of quantum numbers represents the highest energy level in an atom?

a)
$$n = 4, l = 0, m = 0, s = +\frac{1}{2}$$

c) $n = 3, l = 2, m = -2, s = +\frac{1}{2}$

^{b)}
$$n = 3, l = 1, m = 1, s = +\frac{1}{2}$$

^{d)} $n = 3, l = 0, m = 0, s = +\frac{1}{2}$

- 18. Which consists of particle of matter?
 - a) Alpha rays b) Beta rays c) Cathode rays d) All of these
- 19. If λ_1 and λ_2 are the wavelength of characteristic X-rays and gamma rays respectively, then the relation between them is:

a) $\lambda_1 = 1/\lambda_2$ b) $\lambda_1 = \lambda_2$ c) $\lambda_1 > \lambda_2$ d) $\lambda_1 < \lambda_2$

- 20. Which best describe the emission spectra of atomic hydrogen?
 - a) A series of only four lines
 - b) A discrete series of lines of equal intensity and equally spaced with respect to wavelength
 - c) Several discrete series of lines with both intensity and spacings between lines decreasing as the wave number increase within each series
 - d) A continuous emission of radiation of all frequencies