

Chapter 1 Some Basic Concept of Chemistry

Assignment 1

Class 11

PRERNA EDUCATION

CLASS : XIth DATE : SUBJECT : CHEMISTRY DPP No. : 1

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

Cyclohexanol is dehydrated to cyclohexene on heating with conc H₂SO₄. The cyclohexene obtained from 100 g cyclohexanol will be (If yield of reaction is 75%)

 a) 61.5 g
 b) 75.0 g
 c) 20.0 g
 d) 41.0 g

A compound was found to contain nitrogen and oxygen in the ratio, nitrogen 28 g and 80 g of oxygen. The formula of the compound is:
a) NO

a) NO b) $_{N_2O_3}$ c) $_{N_2O_5}$ d) $_{N_2O_4}$

- 3. Versene, a chelating agent having chemical formula C₂H₄N₂(C₂H₂O₂Na)₄. If each mole of this compound could bind 1 mole of Ca² + , then the rating of pure versene expressed as mg of CaCO₃ bound per g of chelating agent is:
 a) 100 mg
 b) 163 mg
 c) 200 mg
 d) 263 mg
- 4. Which of the following is correct?
 - a) Meq. = $N \times V_{\text{in mL}} = \frac{\text{wt.}}{\text{Eq. wt.}} \times 1000$ b) Eq. = $N \times V_{\text{in mL}} = \frac{\text{wt.}}{\text{Eq. wt.}}$

c) Equal equivalent or milli equivalent of reactants react to give same eq. or Meq. of products

- d) All of the above
- 5. 1.0 g of pure calcium carbonate was found to require 50 mL of dilute HCl for complete reactions. The strength of the HCl solution is given by:

a) $_{4N}$ b) $_{2N}$ c) $_{0.4N}$ d) $_{0.2N}$

PRERNA EDUCATION

6. The number of atoms in 4.25 g of NH_3 is approximately

a) $_{6 \times 10^{23}}$ b) $_{2 \times 10^{23}}$ c) $_{1.5 \times 10^{23}}$ d) $_{1 \times 10^{23}}$

MnO₄⁻ ions are reduced in acidic condition to Mn²⁺ ions whereas they are reduced in neutral condition to MnO₂. The oxidation of 25 mL of a solution *X* containing Fe²⁺ ions required in acidic condition 20 mL of a solution *Y* containing MnO₄⁻ ions. What volume of solution *Y* would be required to oxidise 25 mL of a solution *X* containing Fe²⁺ ions in neutral condition?

 a) 11.4 mL
 b) 12.0mL
 c) 33.3 mL
 d) 35.0 mL

 Number of atoms of He in 100 u of He (atomic weight of He is 4) are

 a) 25
 b) 100
 c) 50
 d) 100 × 6 × 10⁻²³

9. Total number of atoms present in 1.0 cm^3 of solid glucose (density 0.8 g/ cm^3) at 25 C are:

a) 2.68 $\times 10^{21}$	b) 6.42×10^{22}	^{c)} 2.68 $\times 10^{22}$	$^{\rm d)}2.68 \times 10^{23}$

- 10. For preparing M/10 solution of H_2SO_4 in one litre we need H_2SO_4 :
 - a) 9.8 g b) 49.0 g c) 4.8 g d) 0.09 g

11. Given, that the abundances of isotopes 54Fe, 56Fe and 57Fe are 5%, 90% and 5%, respectively, the atomic mass of Fe is
a) 55.85 b) 55.95 c) 55.75 d) 56.05

- 12. The concentration of solution containing 0.5 mole H_3PO_4 dissolved in 500 g water:
 - a) $_{1 m}$ b) $_{1 M}$ c) $_{1 N}$ d) $_{0.5 M}$
- 13. Which of the following is correct?
 - a) Mole = molarity $\times V_{\text{in L}} = \frac{\text{wt.}}{\text{mol. wt.}}$

b) Milli mole = molarity × $V_{\text{in mL}} = \frac{\text{wt.}}{\text{mol. wt.}} \times 1000$

c) Mole and milli mole of reactants react according to stoichiometric ratio of balanced chemical

PRERNA EDUCATION

equation d) All of the above

14.	• 100 g of CaCO ₃ is treated with 1 L of 1 N HCI. What would be the weight of CO ₂ liberated after the completion of the reaction?					
	a) 55 g	b) 11 g	c) 22 g	d) 33 g		
15.	If an iodized salt contains 1% KI and a person takes 2 g of the salt every day, the iodide ions going into his body every day would be approximately					
	^{a)} 7.2× 10 ²¹	b) _{7.2×10¹⁹}	c) _{3.6×10²¹}	d) _{9.5×10¹⁹}		
16.	The mass of 11.2 L of ammonia gas at STP is					
	a) 8.5 g	b) 85 g	c) 17 g	d) 1.7 g		
17.	. 0.52 g of dibasic acid required 100 mL of 0.1 <i>N</i> NaOH for complete neutralization. The equivalent weight of acid is:					
	a) 26	b) 52	c) 104	d) 156		
18.	100 tons of Fe_2O_3 containing 20% impurities will give iron by reduction with H_2 equal to					
	a) 112 tons	b)80 tons	c) 160 tons	d) 56 tons		
19.	19. 25 mL of a solution of barium hydroxide on titration with 0.1 <i>M</i> solution of HC value of 35 mL. The molarity of $Ba(OH)_2$ is:					
	a) 0.28	b) 0.35	c) 0.07	d) 0.14		
20.	Volume occupied by one molecule of water (density = 1 g cm^{-3}) is:					
	^{a)} $6.023 \times 10^{-23} \text{cm}^3$	b) $_{3.0} \times 10^{-23} \text{cm}^3$	c) $5.5 \times 10^{-23} \text{cm}^3$	d) $9.0 \times 10^{-23} \text{cm}^3$		