NEET/2019

SAMPLE PAPER

Time Allotted : 3 Hours

Maximum Marks : 720

- Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.
- You are not allowed to leave the Examination Hall before the end of the test.

INSTRUCTIONS

A. General Instructions :

- 1. Attempt ALL the questions. Answers have to be marked on the OMR sheets.
- 2. 1 to 45 Physics, 46 to 90 Chemistry and 91 to 180 Biology.
- **3.** Rough spaces are provided for rough work inside the question paper. No additional sheets will be provided for rough work.
- 4. Blank Papers, clip boards, log tables, slide rule, calculator, cellular phones, pagers and electronic device in any form, are not allowed.

B. Filling of OMR Sheet :

- **1.** Ensure matching of OMR sheet with the question paper before you start marking your answers on OMR sheet.
- 2. On the OMR sheet, darken the appropriate bubble with black/blue pen for each character of your Enrollment No. and write your Name, Test Centre and other details at the designated places.
- 3. OMR sheet contains alphabets, numerals & special characters for making answer.

C. Marking Scheme for All Three Parts :

- 1. This booklet contains 60 questions & all questions are compulsory.
- 2. For each question you will be **awarded 4 marks** if you have darkened **only** the bubble corresponding to the correct answer and **zero mark** if no bubbles are darkened. In all other cases, **minus one (-1) mark** will be awarded.

Name of Candidate :					
Enrollment No. :					

1. The distances of two planets from the sun are 10^{13} and 10^{12} m respectively. The ratio of time periods of these two planet is 1/√10 $11/\sqrt{3}$ km/s (b) 100 (c) 33 km/s (a) (d)2. An engine pumps water continuously through a hose. Water leaves the hose with a velocity v and m is the mass per unit length of the water jet. What is the rate at which kinetic energy is imparted to water? (b) mv³ $1/2mv^2$ $1/2m^2v^2$ $1/2mv^3$ (c) (d) (a) 3. An explosion blows a rock into three parts. Two parts go off right angles to each other. These two are 1 kg. First part moving with a velocity of 12 ms⁻¹ and 2 kg second part moving with a velocity of 8 ms⁻¹. If the third part files off with a velocity of 4 ms⁻¹, its mass would be (a) 5 kg (b) kg (C) 17 kg (d) 3 kg 4. A satellite A of mass m is at a distance r from the surface of the earth. Another satellite B of mass 2 m is at a distance of 2 r from the earth's surface. Their time periods are in the ratio of $1:2\sqrt{2}$ 1:2(b) 1:16(c) 1:32 (d) (a) 5. A bomb of mass 30 kg at rest explodes into two pieces of masses 18 kg and 12 kg. The velocity of 18 kg mass is 6 ms⁻¹. The kinetic energy of the other mass is 256 j (a) (b) 486 j (c) 524 j (d) 324 j 6. A particle of mass m_1 is moving with a with a velocity v_1 and another particle of mass m_2 is moving with a velocity v₂. Both of them have the same momentum, but their different kinetic energies are E_1 and E_2 respectively. If $m_1 > m_2$, then (a) $E_1 < E_2$ (b) $E_1/E_2 = M_1/M_2$ c) $E_1 > E_2$ (d) $E_1 = E_2$ 7. A ball of mass 2 kg and another of mass 4 kg are dropped together from a 60 ft tall building. After a fall of 30 ft each towards earth, respective kinetic energies will be in the ratio of (c) 1:2 (a) $\sqrt{2}:1$ (b) 1:4(d) $1:\sqrt{2}$ 8. If kinetic energy of a body is increased by 300%, then percentage change in momentum will be (a) 100% (b) 150% (c) 265% (d) 73.2% 9. A stone is thrown at an angle of 45° to the horizontal with kinetic energy K. The kinetic energy at the highest point is $K/\sqrt{2}$ K/2(b) (c) Κ Zero (d) (a)10. A child is swinging a swing. Minimum and maximum heights of swing from the earth's surface are 0.75 m 2 m respectively. The maximum velocity of the swing is (a) 5 m/s(b) 10 m/s (c) 15 m/s d) 20 m/s Two bodies with kinetic energies in the ratio 4:1 are moving with equal linear momentum. The ratio of their 11. masses is (a) 1:2(b)1:1(c) 4:1(d) 1:4Two equal masses m1 and m2 moving along the same straight line with velocities + 3 m/s and -5 m/s 11. respectively collide elastically. Their velocities after the collision will be respectively (a) +4 m/s for both (b) $\sim 3 \text{ m/s and} + 5 \text{m/s}$ $\sim 4 \text{ m/s}$ and + 4 m/s(d) $\sim 5 \text{ m/s}$ and + 3 m/s(c) 12. A force acts on a 3.0 g particle in such a way that the position of the particle as a function of time is given by x = $3t - 4t^2 + t^3$, where x is in metre and t in second. The work done during the first 4 s is (a) 570 mJ (b) 450 mJ (c) 490 mJ (d) 528 mJ

Page 2

a)	140 J	(b)	100	ſ	(c)	60 J			(d)	40	ſ			
4. xoal	A body of 1 esced mass start					city 3 k	m/h col	lides wit	h a bo	ody of	mass	2 m at	rest. Now	r, tł
a)	1 km/h	(1	o) 2 ki	n/h	(c)	3 km/1	h		(d)	4 ki	n/h			
5.	If the momentu	am of	a body i	s increas	ed by	50%, the	en the per	rcentage	increas	e in its	kineti	c energy i	is	
a)	50%	(b)	100%	6	(c)	125%			(d)	200	%			
6. nea	Two masses 1 ar momenta is	g and	l 9 g are	moving	with	equal ki	netic ene	ergies. Th	ne ratio	of the	magni	itudes of	their respo	ecti
ı)	1:9	(b)	9:1		(c)	1:3			(d)	3:1				
	A position depe m. Work done i			= (7 – 2	x + 3	3x²) N, a	cts on a s	mall bod	y of ma	ıss 2 kş	g and d	lisplace it	from x= 0) tc
ı)	35	(b)	70		(c)	135			(d)	270				
8. last	Two identicat tically. The veloc									.3 m/s	s respe	ectively, c	collide hea	ıd
ı)	+ 0.5 m/s and	đ + 0.	3 m/s				(b)	~ 0.3 n	1/s and	+ 0.5	m/s			
)	+ 0.3 m/s and	d 0.5 1	n/s				(d)	~ 0.5 n	n/s and	+ 0.3	m/s			
	A bullet of mas city of 500 m/s										e earth	at the sa	me level w	vitł
			work do	ie m jou		overcome	e the resis	stance of	air will	be				
ı)	375		3750	ie in jou	(c)	5000	e the resis	stance of		bе 500				
l)	375 The coefficient	(b)	3750	ŗ	(c)	5000								
1) 0.	The coefficient	(b) of res	3750	ŗ	(c)	5000	collision		(d)					
1) 0. 1) 1.	The coefficient	(b) of res b) 2 ocity f	3750 stitution Zero from the	e for a po earth is	(c) erfect (c)	5000 ly elastic infinite	collision	is	(d) (d)	500 - 1	rection	making a	an angle 4	.50
1) 0. 1) 1. 10 V	The coefficient 1 (The escape velo	(b) of res b) Z ocity f e esca	3750 stitution Zero From the pe veloc:	e for a po earth is ity is	(c) erfecti (c) 11.2 l	5000 ly elastic infinite km/s. If a	collision	is to be pro	(d) (d)	500 - 1	rection (d)	making a 11.2 √2	0	.50
)) 5.)) 1.)) 2. . a:	The coefficient 1 (The escape velo vertical, then the	(b) of res b) Z ocity f e esca s f mass kg. T	3750 stitution Zero From the pe veloc (ses 55 kg he 55 kg	e for a po earth is ity is b) 11. ; and 65 ; man w	(c) erfecti (c) 11.2 l 2 km, kg rea	5000 ly elastic infinite km/s. If /s (c) spectively	collision a body is $11.2/\sqrt{2}$ y, are at t	is to be pro 2 km/s the oppos	(d) (d) ojected i site end	500 - 1 in a din s of a l	(d) Doat. Tl	11.2 √2 he length	km/s] of the boa	ıt is
)) 1.) 2. a: ent	The coefficient 1 (The escape velo- vertical, then the 11.2 x 2 km/s Two persons or nd weighs 100	(b) of res b) Z ocity f e esca s f mass kg. T	3750 stitution Zero From the pe veloc (ses 55 kg he 55 kg	e for a po earth is ity is b) 11. ; and 65 ; man w	(c) erfecti (c) 11.2 l 2 km, kg rea	5000 ly elastic infinite km/s. If /s (c) spectively apto the	collision a body is $11.2/\sqrt{2}$ y, are at t	is to be pro 2 km/s the oppos	(d) (d) ojected i site end	500 - 1 in a din s of a l	(d) Doat. Tl	11.2 √2 he length boat is in	km/s] of the boa	ıt is
) 5.) 1.) 2. au ent	The coefficient 1 (The escape velo- vertical, then the 11.2 x 2 km/s Two persons or nd weighs 100 re of mass of the	(b) of res b) 2 ocity f e esca s f mass kg. T e syste	3750 stitution Zero From the pe veloc (ses 55 kg he 55 kg em shifts (b)	e for a perth is ity is b) 11. c, and 65 c, man w by 2.3 m	(c) erfecti (c) 11.2 l 2 km 2 km kg rea valks t	5000 ly elastic infinite km/s. If /s (c) spectively apto the (c)	collision a body is $11.2/\sqrt{2}$ y, are at 65 kg m zero	is to be pro 2 km/s the oppos an and s	(d) (d) ojected i site end its with	500 - 1 in a din s of a h t him. (d)	(d) boat. Tl If the 0.75	$11.2 \sqrt{2}$ the length boat is in	km/s] of the boa	ıt is
) 5.) 1.) 2. a: ont) 3.	The coefficient 1 (The escape velo- vertical, then the 11.2 x 2 km/s Two persons of nd weighs 100 re of mass of the 3 m	(b) of res b) 2 ocity f e esca s f mass kg. T e syste dulum	3750 stitution Zero From the pe veloc (ses 55 kg he 55 kg em shifts (b) t is mour	e for a po earth is ity is b) 11. 5 and 65 5 man w by 2.3 m nted in a	(c) erfect (c) 11.2 l 2 km/ kg rea ralks t rocke	5000 ly elastic infinite km/s. If /s (c) spectively apto the (c)	collision a body is $11.2/\sqrt{2}$ y, are at 65 kg m zero iod of osc	is to be pro 2 km/s the opposi an and s cillation o	(d) (d) ojected i site end its with	500 - 1 in a din s of a h thim. (d) es whea	(d) boat. The If the 0.75 f	$11.2 \sqrt{2}$ the length boat is in	km/s] of the boa 1 still wate	ıt is
() () () () () () () () () () () () () (The coefficient 1 (The escape velo- vertical, then the 11.2 x 2 km/s Two persons of nd weighs 100 re of mass of the 3 m A seconds pend	(b) of res b) 2 ocity f e esca s f mass kg. T e syste dulum vith u	3750 stitution Zero From the pe veloc (ses 55 kg he 55 kg em shifts (b) t is mour niform a	e for a po- earth is ity is b) 11. 5 and 65 5 man w by 2.3 m nted in a ccelerati	(c) erfect (c) 11.2 l 2 km/ kg rea ralks t rocke	5000 ly elastic infinite km/s. If /s (c) spectively apto the (c)	collision a body is $11.2/\sqrt{2}$ y, are at 65 kg m zero iod of oso (b) m	is to be pro 2 km/s the opposi an and s cillation o	(d) (d) ojected i site end its with decrease nd the e	500 - 1 in a din s of a h thim. (d) es whe earth ir	(d) boat. TI If the 0.75 f n the r n a geo	$11.2 \sqrt{2}$ the length boat is in m ocket stationary	km/s] of the boa 1 still wate	ıt is
)) 1.) 2. arr) 2. arr) 3.) 4.	The coefficient 1 (The escape velo- vertical, then the 11.2 x 2 km/s Two persons of nd weighs 100 re of mass of the 3 m A seconds pendo- comes down v	(b) of res b) 2 ocity f e esca s f mass kg. T e syste dulum vith u n a un	3750 stitution Zero From the pe veloc () wes 55 kg the 55 kg (b) t is mour niform a iform ve	e for a po- earth is ity is b) 11. 5 and 65 5 man w by 2.3 m nted in a ccelerati locity	(c) erfect (c) 11.2 l 2 km/ kg res alks t rocke	5000 ly elastic infinite km/s. If /s (c) spectively upto the (c) t. Its per	collision a body is $11.2/\sqrt{2}$ y, are at 65 kg m zero iod of osc (b) m (d) m	is to be pro 2 km/s the opposition of an and s cillation of oves rous	(d) (d) ojected i site end its with decrease nd the e with ur	500 - 1 in a din s of a h thim. (d) es whe earth ir hiform	(d) boat. The If the 0.75 n the r n a geo acceler	$11.2 \sqrt{2}$ the length boat is in m ocket stationary ration	km/s] of the boa 1 still wate	ıt is er t
() () () () () () () () () ()	The coefficient 1 (The escape velo- vertical, then the 11.2 x 2 km/s Two persons of nd weighs 100 re of mass of the 3 m A seconds pend comes down w moves up with A particle mor	(b) of res b) 2 ocity f e esca s f mass kg. T e syste dulum vith u n a un ves in	3750 stitution Zero From the pe veloc () () () () () () () () () () () () ()	e for a po- earth is ity is b) 11. 5 and 65 5 man w by 2.3 m nted in a ccelerati locity	(c) erfect (c) 11.2 l 2 km/ kg res alks t rocke	5000 ly elastic infinite km/s. If /s (c) spectively upto the (c) t. Its per	collision a body is $11.2/\sqrt{2}$ y, are at 65 kg m zero iod of osc (b) m (d) m constant	is to be pro 2 km/s the opposition of an and s cillation of oves rous	(d) (d) ojected i site end its with decrease nd the e with ur	500 - 1 in a din s of a h thim. (d) es whe earth ir hiform	(d) boat. The If the 0.75 n the r n a geo acceler	$11.2 \sqrt{2}$ the length boat is in m ocket stationary ration . The acco	km/s] of the boa 1 still wate	ıt is er t
(i) (1, 1) (1, 1) (1, 2) (1, 2)	The coefficient 1 (The escape velo- vertical, then the 11.2 x 2 km/s Two persons of nd weighs 100 re of mass of the 3 m A seconds pend comes down w moves up with A particle moviciel is	(b) of res b) 2 ocity f e esca s f mass kg. T. e syste dulum with u n a un ves in	3750 stitution Zero From the pe veloc () () () () () () () () () () () () ()	e for a period earth is ity is b) 11. (c) and 65 (c) man we by 2.3 method in a cceleration locity of radiu m/s ² position for the position for the formula to the construct of	(c) erfecti (c) 11.21 2 km/ kg rea alks t rocke on us 5 ci (c) of a p	5000 ly elastic infinite km/s. If /s (c) spectively apto the (c) t. Its perf m with c 5 m/s ²	collision a body is $11.2/\sqrt{2}$ y, are at 65 kg m zero iod of osc (b) m (d) m constant	is to be pro 2 km/s the opposition of an and s cillation of oves rous noves up speed an	(d) (d) ojected i site end its with decrease nd the e with ur d time	500 - 1 in a din s of a h n him. (d) es when earth in hiform period (d)	(d) boat. The o.75 f in the ro in a geo acceler $0.2\pi s$. 15 m	11.2 $\sqrt{2}$ the length boat is in m ocket stationary ration . The acco	km/s] of the boa 1 still wate	of t

Page 4

(a) $\sqrt{GM_e/R_e}$	(b) $\sqrt{2} \text{ GM}_{e}/\text{R}_{e}$	(c) $\sqrt{2GM/R_e}$	(d) GM_e/R_e^2
27. If F is the force a then	acting on a particle havin	g position vector r and	(tau) be the torque of this force about the origin,
(a) r. (tau) \neq 0 and	F. $(tau) = 0$	(b)	r. (tau) > 0 and F. (tau) < 0
(c) r. $(tau) = 0$ and 1	F. (tau) $= 0$	(d)	r. (tau) = 0 and F. (tau) $\neq 0$
	the shortest distance of th najor axis of the orbit dra		are r_1 and r_2 . Its distance from the sun when it is
(a) $r_1 + r_2/4$ (b)	$r_1 + r_2/r_1 - r_2$ (6)	c) $2 r_1 r_2 / r_1 + r_2$	(d) $r_1 + r_2/3$
29. The moment of it the disc and normal to		llar disc of radius R and	d mass M about an axis passing from the edge of
(a) $\frac{1}{2}$ MR ²	(b) MR^2 (c)	7/2 MR ²	(d) $3/2 \text{ MR}^2$
	eous sphere of mass M ar this kind of motion of the		on a rough horizontal surface, partly rolling and
(a) total kinetic ener	rgy is conserved		
	ar momentum of the nal kinetic energy about the		bint of contact with the plane is conserved aserved
(d) angular moment	tum about the centre of n	nass is conserved	
	h 3 m and its mass acting of the rod from that end w		ectly proportional to distance x from its one end.
(a) 1.5 m	b) 2 m (c)	2.5 m	(d) 3 m
32. A disc is rotating	with angular velocity. If a	a child sits on it what i	s conserved ?
(a) Linear momentu	im b) Angular moment	tum (c) Kinetic energ	gy (d) Moment of inertia
			each other on a horizontal surface such that an ntre of mass of the system is located at
(a) horizontal surfac	ce	(b)	centre of one of the balls
(c) line joining the c	centres of any two balls	(d)	point of intersection of the medians
34. A couple produce	28		
(a) no motion		(b)	linear and rotation motion
(c) purely rotational	1 motion	(d)	purely linear motion
35. The angular speed	d of an engine wheel mak	xing 90 rev/min is	
(a) $1.5 \pi rad/s$	(b) $3 \pi rad/s$	(c) $4.5 \pi rad/s$	(d) $6 \pi \text{ rad/s}$
36.Angular momentur	m is		
(a) vector (axial)	(b) vector (polar)	(c) scalar	(d) None of these
37. In a rectangle AB	BCD (BC = 2AB). The mon	nent of inertia is minin	num along axis through
(a) BC	(b) BD (c)	HF	(d) EG
38.If a sphere is rolling	g, the ratio of the translat	ional energy to total ki	netic energy is given by
(a) 7:10	(b) 2:5 (c)	10:7	(d) 5:7
39. The following fc	our wires are made of sa	me material. Which o	f these will have the largest extension when the

39. The following four wires are made of same material. Which of these will have the largest extension when the same tension is applied?

Pag	e 5								PRERN	NA -NEET/2019
(a)	Length =50 cm	diamete	er = 0.5 mm			(b)	Lei	ngth = 100 cn	n, diameter =	= 1 mm
(c)	Length = 200 cm	n, diam	eter = 2 mm			(d)	Lei	ngth = 300 cm	n, diameter =	= 3 mm
40. Wha	Escape velocity at is the escape ve				. Anoth	her planet o	f same	e mass has rad	dius ¼ times	that of the earth.
(a)	11.2 km/s	(b)	44.8 km/s		(c)	22.4 km/s		(d)	5.6 km/s	
	A geostationary are earth. The time									R being the radius h is
(a)	5	(b)	10		(c)	6√2		(d)	$6/\sqrt{2}$	
42. The	A body projected power exerted by					a height eq	aal to	earth's radius	before retur	ming to the earth.
(a)	at the instant ju	st before	e the body hi	ts the ear	rth		(b)	it remains co	nstant all thi	rough
(c)	at the instant ju	st after t	he body is pi	rojected			(d)	at the highes	t position of	the body
43.	For a satellite mc	ving in	an orbit aroı	and the e	earth, t	he ratio of k	inetic	energy to pot	ential energy	' is
(a)	2	(b) ¹ ⁄	2		(c)	$1/\sqrt{2}$		(d	$\sqrt{2}$	
44.	A body attains a	height e	qual to the r	adius of t	the ear	rth. The velc	city o	f the body wit	h which it w	as projected is
(a)	√GM/R	(b)	√2GM/R		(c)	√5/4 GM	/R	(d) √3GM/F	
45. pres	The escape velo ent value and the									crease to twice its
(a)	44.8 km/s	(b)	22.4 km/s		(c)	11.2 km/s	s (rem	ain unchange	d) d) 5	6 km/s
46. vapo	The sublimation of I_2 is:	1 energy	y of $I_2(s)$ is	57.3 KJ/	mol a	and the ent	halpy	of fusion is	15.5 kJ/mol	. The enthalpy of
(a)	41.8 kJ/mol	(b)	~ 41.8 kJ/1	nol	(c)7	2.8kJ/mol			(d) ~ 72.8	3 kJ/mol
	Consider the rea									ressure. If ΔH and s true?
(a)	$\Delta H = 0$						(b)	$\Delta H = \Delta U$		
(c)	$\Delta H < \Delta U$						(d)	$\Delta H > \Delta U$		
48. Y₂—			$_{2}$, Y_{2} and XY_{2} to be at equi						For the react	ion; $\frac{1}{2}$ X ₂ + 3/2
(a)	1000 K	(b)	1250 K	(c) 5	500 K			(d) 750	K	
the j	A 1 g sample of procedure is repe pare?									
		Su	lbstance					Specific heat		
			A				(0.6 J g ^{~1} ° C ^{~1}		
			В				(0.4 J g ⁻¹ ° C ⁻¹		

(a) $T_C > T_B > T_A$ (b) $T_B > T_A > T_C$ (c) $T_A > T_B > T_C$ (d) $T_A = T_B = T_C$

50. The reversible expansion of an ideal gas under adiabatic and isothermal condition is shown in the figure. Which of the following statement(s) is (are) correct?

(C) W isothermal

51. For an ideal gas, consider only P-V work in going from an initial state X to the final state Z. The final state Z can can be reached by either of the two paths shown in the figure. Which of the following choice(s) is (are) correct ? [take ΔS as change in entropy and w as work done]

(a) 1.30 (b) 1.50 (c) 1.70 (d) 2

54. For an ideal gas $[C_{pm}/C_{vm} = Y]$; of molar mass, its specific heat capacity at constant volume is :

(b) $Y/M(Y \sim 1)$ (d) $Y^{RM}/Y - 1$ $Y^{\mathbb{R}}/(Y \sim 1)M$ (a) (c)M/R(Y-1)

55. An ideal gas in a thermally insulated vessel at internal pressure = P_1 , volume = V_1 and absolute temperature = T_1 expands irreversibly against zero external pressure, as shown in the diagram. The final external pressure, volume and absolute temperature of the gas are P_2 , V_2 and T_2 respectively. For this expansion :

56. One mole of an ideal gas is taken from a to b along two paths denoted by the solid and the dashed lines as shown in the graph below. If the work done along the solid line path is W_s and that along the dotted line path is W_d , then the integer closest to the ratio W_d/W_s is :

Page 6

(c) (ii) < (iii) < (i) < (iv)	(d) (iii) $<$ (i) $<$ (iv) $<$ (ii)
65. Which of the following chemical reaction depicts the c	oxidising behaviour of H ₂ SO ₄ ?
(a) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$ (b)	$Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4 + 2H_2O$
(c) $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCL$ (c)	d) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 + 2HCL + SO_2Cl_2$
66. The pair in which phosphorous atoms have a formal o	xidation state of $+3$ is;
(a) Orthophosphorous and pyrophosphorous acids (h	b) Pyrophosphorous and hypophosphoric acids
(c) Orthophosphorous and hypophosphoric acids	(d) pyrophosphorous and pyrophosphoric acids
67. The oxidation states of sulphur in caro's and Marshall'	s acid are:
(a) $+ 6, + 6$ (b) $+ 4, + 6$ (c) $+$	-6, -6 (d) $+6, +4$
68. Consider the following plot : Gas C $Gas A$ $Ideal gas$ $Gas B$	
Which of the following statement is wrong?	
(a) For a gas A, $a = 0$, and Z will linearly depend on press	
(b) For a gas B, $b = 0$, and Z will linearly depend on press	
(c) Gas C is a real gas and we can find 'a' and 'b' if inters	
(d) All van der Waals gases will behave like gas C and giv	
69. If the ratio of the masses of SO_3 and O_2 gases confine would be	ed in a vessel is 1:1, then the ratio of their partial pressure
(a) 5:2 (b) 2:5 (c) 2:1	(d) 1:2
70 50 mL of each gas A and of gas B takes 150 and 200 the similar condition. If molecular mass of gas A is 36, the r	seconds respectively for effusing through a pin hole under nolecular mass of gas B will be
(a) 96 (b) 128 (c) 32	(d) 64
71. The compressibility factor for a real gas at high pressu	re is
(a) 1 (b) $1 + pb/RT$ (c) 1	-pb/RT (d) $1 + RT/pb$
72. In thermodynamics, a process is called reversible when	1
(a) surroundings and system change into each other	
(b) there is no boundary between system and surroundin	gs
(c) the surroundings are always in equilibrium with the s	ystem
(d) the system change into surroundings spontaneously	
73. Considering entropy (s) as a thermodynamic parameter	r, the criterion for the spontaneity of any process is
(a) $\Delta S_{\text{System}} \sim \Delta S_{\text{Surrounding}} > 0$ (b)	$\Delta S_{System} > 0$
(c) $\Delta S_{\text{Surrounding}} > 0$ (d)	$\Delta S_{\text{System}} + \Delta S_{\text{Surrounding}} > 0$

74. Which of the following reaction are correct?

(a)	$\Delta S = \Delta H \sim \Delta T/T$	(b)	$\Delta S = q_{\rm irrev}/T$

(c) $K = e^{\Delta G_0/RT}$ (d) $[d(\Delta H)^T/dT]_p = \Delta C_p$

75. The incorrect expression among the following is

(a) in isothermal process, W $_{\rm reversible}$ = ~ nRT in V_f/V_i (b) In K = $\Delta H^{\circ} - T \Delta S^{\circ}/RT$

(c) $K = e^{-\Delta Go(degree) \setminus RT}$

76. If Z is a compressibility factor, van der waals' equation at low pressure3 can be written as

(a) Z=1-pb/RT (b) Z=1+p[b/RT (c) Z=1+RT/pb (d) Z=1-a/VRT

77. The intermolecular interaction that is dependent on the inverse cube of distance between the molecules is

(d)

 $\Delta G_{\text{system}} / \Delta S_{\text{total}} = - T$

(a) hydrogen bond (b) ion-ion interaction (c) ion-dipole interaction (d) London force

78. A gas described by van der waals' equation:

(a) behaves similar to an ideal gas in the limit of large molar volume

(b) behaves similar to an ideal gas in the limit of large pressures

(c) is characterised by van der waals' constant that are dependent on identity of the gas but are independent of the temperature

(d) has the pressure that is lower then the pressure exerted by the same behaving ideally

79. When $KMnO_4$ acts as an oxidising agent and ultimately forms MnO_4^{2-} , MnO_2 , Mn_2O_3 and Mn^{2+} , then the number of electrons transferred in each case respectively is

(a) 4, 3, 1, 5 (b) 1, 5, 3, 7 (c) 1, 3, 4, 5 (d) 3, 5, 7, 1

80. Which of the following is a redox reaction?

(a) Nacl + KNO₃ \rightarrow NaNO₃ + KCl (b) CaC₂O₄ + 2HCl \rightarrow CaCl₂ + 2NH₄OH

(c) $Mg(OH)_2 + 2NH_4Cl \rightarrow Mgcl_2 + 2NH_4OH$ (d) $Zn + 2AgCN \rightarrow Zn(CN)_2$

81. Which is a correct relationship?

(a) $[dH/dT]_{p}-[dU/dT]_{T} = (+ve)$ (b) $[dU/dV]_{r} = 0$ (for ideal gas)

(c) $[dV/dT]_p = n^R/P$ (for ideal gas) (d) All of the above

82. For the two equation given below:

$$\begin{aligned} H_2(g) + \frac{1}{2} O_2(g) &\to H_2O(l) + x_1 \text{ kJ} \\ H_2(g) + \frac{1}{2} O_2(g) &\to H_2O(l) + x_2 \text{ kJ} \end{aligned}$$

(a) $x_1 > x_2$ (b) $x_2 > x_1$ (c) $x_1 = x_2$ (d) $x_1 + x_2 = 0$

83. The Haber's process for production of ammonia involves the equilibrium:

 $N_2(g) + 3H_2(g) - 2NH_3(g)$

Assuming ΔH° and ΔS° for the reaction do not change with temperature, which of the statement is true? ($\Delta H^{\circ} = -95 \text{ kJ}$ and $\Delta S^{\circ} = -190 \text{ JK}^{-1}$)

(a) Ammonia dissociates spontaneously below 500 K

(b) Ammonia dissociates spontaneously above 500 K

(c) Ammonia dissociates at all temperatures

(d) Ammonia does not dissociate at any temperature

84. What is the value of internal energy change (ΔU) at 27°C of a gaseous reaction 2A₂(g) + 5B₂(g) \rightarrow 2A₂B₅(g)(whose heat change at constant pressure is-50700 J)?

 $(R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1})$

(a) -50700 J (b) -63171 J (c) -38229 J (d) +38229 J

85. The root mean square velocity of an ideal gas at constant pressure varies with density as:

(a)
$$d^2$$
 (b) d (c) \sqrt{d} (d) $1/\sqrt{d}$

86. The compressibility of a gas is less than unity at STP. Therefore:

- (a) $V_m > 22.4$ litre (b) $V_m < 22.4$ litre
- (c) $V_m = 22.4$ litre (d) $V_m = 44.8$ litre

87. For three different gases values of van der waals' constant 'a' and 'b' are given. What is the correct order of liquefaction of gases?

	Gases	a	b
	X2	1.3	0.990
	Y2	4.1	0.223
	Z2	2.2	0.075
(a)	$X_2 > Y_2 > Z_2$	(b)	$Y_2 > Z_2 > X_2$
(c)	$Z_2 > Y_2 > X_2$	(d)	$X_2 > Z_2 > Y_2$

88. The root mean square speed of molecules of nitrogen gas is v at a certain temperature. When the temperature is doubled, the molecules dissociate into individual atoms. The new rms speed of the atom is

(a) $\sqrt{2v}$ (b) 2v (c) v (d) 4v

89. At same temperature, calculate the ratio of average velocity of SO₂ to CH₄:

(a) 2:3 (b) 3:4 (c) 1:2 (d) 1:6

90. Which is the correct expression that relates changes of entropy with the change of pressure for an ideal gas at constant temperature, among the following?

- (a) $\Delta S = nRT$ in P_2/P_1 (b) $\Delta S = T (P_2 P_1)$
- (c) $\Delta S = nRT$ in (P_1/P_2) (d) $\Delta S = 2.303 nRT$ in (P_1/P_2)

91. Growth in plants is largely restricted to specialised regions of active cell division called

(a) Meristems (b) Cambium (c) Primordium (d) Permanent tissue

92. Which of the following characteristic is not found in parenchyma?

(a) It forms the major component within organs

(b) Their walls are thick and made up of cellulose.

(c) They may either be closely packed or have small intercellular spaces

(d) The parenchyma performs various functions like photosynthesis, storage and secretion.

93. Intercalary meristem produces

(a) Secondary growth (b) Primary growth (c) Apical growth (d) Secondary overgrowth

94. Common between sclerenchyma and collenchyma is

- (a) Material transport (b) Conduction of water and minerals
- (c) Providing buoyancy (d) Providing support

95. Fill in the blank :

a. In... 1... type of a vascular bundles, the xylem and phloem are situated at the same radius of vascular bundles. Such vascular bundles are common in ...2...

b. When xylem and phloem within a vascular bundle are arranged in an alternate manner on different radii, the arrangement is called ...3...such as in ..4...

(a) 1---- radial, 2----conjoint, 2---stem and leaves, 4---roots

- (b) 1---- radial, 3----conjoint, 4---stem and leaves, 2---roots
- (c) 3---- radial, 1----conjoint, 2---stem and leaves, 4---roots
- (d) 3---- radial, 1----conjoint, 4---stem and leaves, 4---roots

96. Root hairs are

- (a) always unicellular (b) sometimes unicellular
- (c) sometimes multicellular (d) always multicellular
- 97. Which statement is incorrect about dicot stem?
- (a) Collenchymatous hypodermis, sclerenchymatous pericycle, parenchymatous pith

(b) Ring arrangement of vascular bundles, parenchymatous medullary rays and endodermal starch sheath

- (c) Multiple layered cortex; semi-lunar pericycle ;conjoint, open and endarch protoxylem
- (d) None of the above
- 98. In dicot leaves, size of vascular bundles are dependent on the
- (a) Size of the leaves (b) Size of the mesophyll cells
- (c) Size of the veins (d) Size of the bundles sheath cells

99. In order trees, the greater part of ...a....is dark brown due to deposition of tennin, resins, oil, guns, aromatic substances and essential oil in the central layers of the stem. These substances make it hard durable and resistant to the attacks of microorganisms and insect. This region is called ...b...

- (a) a----secondary xylem, b----sapwood (b) a----secondary xylem, b----heartwood
- (c) a----secondary phloem, b----softwood (d) a----secondary xylem, b----hardwood

100. Which of the following statement about cilia is not correct ?

- (a) Organised beating of cilia is controlled by fluxes of Ca²⁺ across the membrane
- (b) Cilia are hair like cellular appendages

(c) micro	Cilia contain an outer ring of mine doublet microtubules surrounding two singlet otubules							
(d)	Microtubules of cilia are composed of tubulin							
101.	Which is wrong?							
(a) boun) Both chloroplast and mitochondrion have an internal compartment or thylakoid space bunded by thylakoid membrane							
(b)	Both contain DNA (c) Chloroplast is generally larger							
(d)	Both are covered by double membrane							
102.	In planet cell, the vacuole							
(a)	Contains air and lacks membrane							
(b)	Contains water and excretory substances but lacks membrane							
(c)	Contains storage protein and lipids and is membrane bound							
(d)	is membrane bound, contain water and excretory substances							
103.	Plasmodesmata are							
(a)	Locomotory structure (b) Lignified cement between cells							
(c)	Connection between adjacent cells							
(d)	Membrane connecting nucleus and plasmalemma							
104.	Which is correct?							
(a)	Oil storageRhodoplast (b) Protein storageAmyloplast							
(c)	Starch storageAleuroplast (d) Fat storageElaioplast							
105.	Cell history was propounded by							
(a)	A botanist (b) A zoologist							
(c)	Both a botanist and a zoologist (d) A psychologist							
106.	Detailed structure of the membrane was studied after the advent of electron microscope in							
(a)	1930s (b) 1950s (c) 1970s (d) 1990s							
107.	Nuclear membrane is absent in							
(a)	Plantae (b) Protista (c) Monera/Nostoc (d) Fungi							
108.	Match the following and select the correct answer							
(a)	Centriole (i) Infoldings in mitochondria							
(b)	Chlorophy II (ii) Thylakoids							
(c)	Cristae (iii) Nucleic acids							
(d)	Ribozymes (iv) Basal body, cilia or flagella							
(A)	aiv, biii, ci, dii (B) aiv, bii, civ, diii							
(C)	ai, bii, civ, diii (D) ai, biii, cii, div							

Page 13 PRERNA -NEET/2019
109. Phase of cell cycle when DNA polymerase is active
(a) Genotype (b) Phenotype (c) Genome (d) Genetic system
110. Telophase is characterised by
(a) Chromosomes cluster at opposite spindle poles and their identify is lost as discrete elements(b) Nuclear envelope assembles around the chromosome cluster
(c) Nucleolus, golgi complex and ER reform
(d) All of the above
111.Prophase-1 is subdivided into five phases based on
(a) Chromosomal movement (b) Chromosomal alignment
(c) Chromosomal behaviour (d) Chromosomal structure
112. Synapsis occurs between
(a) Spindle fibres and centromeres (b) mRNA and ribosomes
(c) A male and female gamete (d) Two homologous chromosomes
113.During cell cycle, RNA and proteins are synthesised in
(a) S-phase (b) G_{1} -phase (c) G_{2} -phase (d) Both B and C
114. Select the correct matches:
(a) S-phase DNA replication (b) Zygotene Synapsis
(c) Diplotene Crossing over (d) Meiosis Both haploid and diploid cells
(e) Gap 2 phase Question?
(A) a and b (B) c and d (C) c and e (D) a, c and e
115. The complex formed by a pair of synapsed homologous chromosomes is called
(a) Bivalent (b) Axoneme (c) Equatorial plate (d) Kinetochore
116. A bacteria divides in every one minute. A cup is filled in one hour. Time taken to fill one – fourth cup is
(a) 30 minutes (b) 59 minutes (c) 29 minutes (d) 58 minutes
117. The complex formed by a pair of synapsed homologous chromosomes is called
(a) Kinetochore (b) Bivalent (c) Axoneme (d) Equatorial plate
118. A cell increase in volume if the external medium is
(a) Hypotonic (b) Hypertonic (c) Isotonic (d) None of the above
119. A and B cells are contiguous. Cell A has $OP = 1$ atm, $TP = 7$ atm and $DPD = 5$ atm. The result would be
(a) No movement of water (b) Equilibrium between the two
(c) Movement of water from A to B (d) Movement of water from B to A
120. For the same amount of CO_2 fixed, a C_4 plant as compared to C_3 plant loses only
(a) Half amount of water (d) double amount of water

 121. Compared to I M sucrose solution, the Ψ_{omega} of I M sodium chloride solution is (a) High (b) same (c) Lower (d) None of the above 122. Which is not directly connected with ascent of sap? (a) Cohesion theory (b) Root pressure (c) Apoplast-symplast (d) Capillarity 123. Which is not a purpose of transpiration? (a) Prevents loss of water (b) Helps in absorption and transport (c) Makes cells rigid (d) Cools leaf surfaces 124. The osmotic expansion of a cell kept in water is chiefly regulated by
 122. Which is not directly connected with ascent of sap? (a) Cohesion theory (b) Root pressure (c) Apoplast-symplast (d) Capillarity 123. Which is not a purpose of transpiration? (a) Prevents loss of water (b) Helps in absorption and transport (c) Makes cells rigid (d) Cools leaf surfaces
 (a) Cohesion theory (b) Root pressure (c) Apoplast-symplast (d) Capillarity 123. Which is not a purpose of transpiration? (a) Prevents loss of water (b) Helps in absorption and transport (c) Makes cells rigid (d) Cools leaf surfaces
123. Which is not a purpose of transpiration?(a) Prevents loss of water(b) Helps in absorption and transport(c) Makes cells rigid(d) Cools leaf surfaces
(a)Prevents loss of water(b)Helps in absorption and transport(c)Makes cells rigid(d)Cools leaf surfaces
(c) Makes cells rigid (d) Cools leaf surfaces
104 The comparison of a coll least in water is chiefly regulated by
124. The oshibic expansion of a cen kept in water is chieny regulated by
(a) Ribosomes (b) Mitochondria (c) Vacuoles (d) Plastids
125. Which of the following statement is correct?
(a) Organic and mineral nutrients undergo multi-directional transport
(b) Water transport in phloem is unidirectional
(c) Transport of minerals occurs in xylem and is multidirectional
(d) During senescence nutrients move from healthy plant parts of senescing regions
126. Which of the following scientists is credited with the mechanism of opening and closing of stomata related to K^+ exchange?
(a) Levitt (b) sayre (c) Scarth (d) Lloyd
127. The ion controlling stomatal movement is
(a) Na ⁺ (b) Ca ²⁺ (c) Mg ²⁺ (d) K ⁺
128. Which is a symbiotic N ₂ -fixer in non-leguminous plants?
(a) Rhizobium (b) Frankia (c) Rhodospirillum (d) Both A and B
129. Micronutrients are needed in amounts
(a) 8 m mole/kg dry metter (b) 18 m mole/kg dry metter
(c) 25 m mole/kg dry metter (d) 30 m mole/kg dry metter
130. Function of leghaemoglobin during biological nitrogen fixation in root nodules of legumes is to
(a) Convert atmospheric nitrogen to ammonia (b) Convert ammonia to nitrite
(c) Transport oxygen for activity of nitrogenase (d) Protect nitrogenase from oxygen
131. For its activity nitrogenase requires
(a) High input of energy (b) Light (c) Mn^{2+} (d) Super oxygen radicals
132. Deficiency symptoms of nitrogen and potassium are visible first in
(a) Buds (b) Senescent leaves (c) Young leaves (d) Roots

(a)	Rhizobium (b) Azotobacter (c) Xanthomonas (d) Rhizopus
134.	The first nif genes were isolated from
(a)	Klebsiella aerogenosa (b) Klebsiella oxytoca
(c)	Klebsiella pneumoniae (d) Klebsiella granulomatis
135.	Ferrodoxin (Fd) is a
(a)	Non-heme iron protein (b) Heme iron protein
(c)	Copper containing protein (d) None of the above
136.	Part of bile useful in digestion is
(a)	Bile pigments (b) Bile salts (c) Bile matrix (d) All the above
137.	Which one is fat soluble?
(a)	A, D, E, K (b) A, D, C, K (c) A, B, C, K (d) A, B, D, E
138.	Find out the correct sequence of substrate, enzyme and product
(a)	Small intestine : Protenis Pepsin Amino acid
(b)	Stomach : Fat Lipase Micelle
(c)	Duodenum : Triglycerides Trypsin Monoglycerides
(d)	Small intestine : starch a – Amylase Maltose
139.	Stool in infant feeding entirely on whitish mother's milk is yellowish due to
(a)	Intestinal juice (b) Pancreatic juice (c) Bile pigments (d) Undigested milk casein
140.	Which are all proteolytic enzymes?
(a)	Ptyalin, trypsin, pepsin (b) Lipase, erepsin, trypsin
(c)	Erepsin, trypsin, pepsin (d) Pepsin, nuclease, nucleotidase
141.	Which is not a disorder of digestive system
(a)	Emphysema (b) Jaundice (c) Constipation (d) Vomiting
142.	Sphincter of Oddi is associated with opening of
(a)	Hepato-pancreatic ampulla (b) Oesophagus
(c)	Common hepatic duct (d) Pyloric stomach
143. with	Select the answer which gives correct matching of the end products of digestion in humans the site and mechanism of absorption

	Product	Site of absorption	Mechanism
(a)	Galactose	Mouth	Active absorption
(b)	Proline	Stomach	Passive absorption
(c)	Fructose	Small intestine	Active transport
(d)	Glucose	Small intestine	Active transport

144. Gastric juice of infants contains	
(a) Pepsinogen, Lipase, rennin	(b) Amlyse, rennin, pepsinogen
(c) Maltase, pepsinogen, rennin	(d) Nuclease, pepsinogen, lipase
145. Pneumotaxic centre occurs in	
(a) Cerebellum (b) Cerebrum (c)	Medulla oblongata (d) Pons varolii
146. Vital capacity of lungs is	
(a) Inspiratory reserve volume plus expirato	ory reserve volume
(b) Inspiratory reserve volume plus tidal vol	lume
(c) Total lungs capacity minus expiratory re	eserve volume
(d) Total lung capacity minus residual volum	me
147. In a resting person, oxygen saturation is	of haemoglobin as blood leaves the tissue capillaries
(a) 25% (b) 40% (c) 46%	(d) 75%
148. Partial pressure of oxygen in alveolar ai	r is
(a) 45 mm Hg (b) 15 mm Hg (d	c) 100 mm Hg (d) 104 mm Hg
149. What is true about RBCs in human?	
(a) They transport 99.5% of O_2	
(b) They transport 80% oxygen, the rest 20%	6 being transport by plasma
(c) They do not carry CO_2 at all	
(d) They carry 20-25% of CO_2	
150. Amount of CO_2 in expired air is about	
(a) 0.04% (b) 0.03% (c) 21	% (d) 4.5%
151. A large proportion of oxygen is left unus tissue. This oxygen	sed in the human blood even after uptake by the body
(a) is enough to keep oxyhaemoglobin satur	ration at 96%
(b) Helps in releasing more oxygen to epithe	elial tissues
(c) Acts as a reserve during muscular exerc	ise
(d) Raise pCO_2 of blood to 75 mm Hg	
152. After forceful inspiration, the amount of expiration is equal to	of air that can be breathed out with maximum forced
(a) $TV + RV + ERV$ (b) IRV + TV + ERV
(c) $IRV + RV + ERV$ (c)	d) IRV ERV + TV + RV
153. Name the chronic respiratory disorder of	caused mainly by cigarette smoking
(a) Emphysema	(b) Asthma

PRERNA -NEET/2019

(d) (c) Respiratory acidosis Respiratory alkalosis A person on long hunger strike and surviving only on water will have 154. (a) Less amino acids in urine (b) More glucose in blood (c) Less urea in urine (d) More3 sodium in urine 155. Which one is a component of ornithine cycle? Ornithine, citrulline and alanine (b) Ornithine, citrulline and arginine (a) Amino acids are not used (d) Ornithine, citrulline and fumaric in human blood (c) 156. Which is wrongly matched? (a) DCT---Absorption of glucose (b) Bowman's capsule -Glomerular filtration Henle's loop---Concentration of urine PCT---Absorption of Na⁺ and K⁺ ions (c) (d) 157. Which one of the following statement in regard to the excretion by the human kidneys is correct? Distal convoluted tubule is incapable of reabsorbing HCO₃ (a) Nearly 99% of glomerular filtrate is reabsorbed by renal tubules (b) Ascending limb of loop of Henle is impermeable to electrolytes (c) (d) Descending limb of loop OF Henle is impermeable to water Which is correct? 158. (a) Distal convoluted tubule—Reabsorption of K⁺ ions Afferent arteriole— Carries blood away from glomerulus (b) Podocytes — Create minute spaces (slit pores) for filtration (c) (d) Henle's loop— Most reabsorption of major substances Maximum amount of electrolytes and 70-80% water from glomerular filtrate is reabsorbed 159. in PCT Descending limb of Henle's loop (a) (b) Ascending limb of Henle's loop DCT (c) (d) 160. Which is correct in normal humans? pH of urine is around 8 (b) 20—30 mg f urea is excreted per day (a) (c) Ketone bodies in urine indicate diabetes mellitus Glycosuria is treated with hemodialysis (d) 161. Reaction of ornithine cycle occur in liver to produce area (b) kidney to produce urine (a) liver to produce ammonia kidney to form urea (c) (d) 162. Human urine is usually acidic because excreted plasma proteins are acidic (a)

(b) potassium and sodium exchange generates acidity

(c) Hydrogen icons are actively secreted into the filtrate		
(d) The sodium transporter exchanges one hydrogen for each sodium ion, in peritublar capillaries		
163. Which one is anatomically correct?		
(a) Collar bones3 pair (b) salivary glands1 pair		
(c) Cranial nerves10 pair (d) Foating ribs2 pair		
164. Which is correct paired?		
(a) Heart Involuntary, unstriated muscle (b) IrisInvoluntary, smooth muscle		
(c) BicepsSmooth muscle (d) Abdominal wallsmooth muscle		
165. Which one is correct match of three items and their grouping category?		
Item Group		
 (a) Cytosine, uracil, thiamine pyrimidines (b) Malleus, incus, cochlea Ear ossicles (c) Illium, ischium, pubis Coxal bones of pelvic girdle (d) Actin, myosin, rhodopsin muscle proteins 		
166. In a resting muscle fibre, troponin partially covbers		
(a) ca-binding sites on actin (b) Ca- binding sites con troponin		
(c) actin binding sites on myosin (d) Myosin binding sites on actin		
167. Which is correct description ?		
(a) First vertebra is axis which articulates with occipital condyles		
(b) parietal bone and temporal bone of skull are jointed by fibrous joint		
(c) 9 th and 10 th pairs of ribs are called floating ribs		
(d) Glenoid cavity is depression to which thigh bone articulates		
168. What is the location of troponin in the process of muscle contraction?		
(a) Attached to myosin (b) Attached to tropomyosin		
(c) Attached to myosin cross-bridges (d) Attached to T-tubule		
169. Symphysis consist of		
(a) Hyaline cartilage (b) Elastic cartilage (c) fibrocartilage (d) Synovial fluid		
170. Rigor mortis is due to		
(a) Depletion of ATP (b) Excess ATP		
(c) Excess availability of calcium (d) Release of magnesium		
171. Select the correct matching of the type of the joint with the example in human skeletal system		
Type of joint Example		

(a) Gliding joint Between carpals

(b) Cartilaginous joint	Between frontal and parietal	
(c) Pivot joint I	Between third and fourth cervical vertebrae	
(d) Hinge joint H	Between humerus and pectoral girdle	
172. Sliding filament theory can be best explained as		
(a) Actin and myosin filaments do not shorten but rather slide pass each other		
(b) When myofilaments slide pass each other, myosin filaments shorten while Actin filaments do not shorten		
(c) When myofilaments slide pass each other Actin filaments shorten while myosin filaments do not shorten		
(d) Actin & Myosin filaments shorter	n and slide pass each other	
173. Cervical vertebrae are character	ized by	
(a) Transverse processes	(b) Neural spines	
(c) Vertebro-arterial canals	(d) Odontoid process	
174. At times ligaments and tendons are overstretched or torn. The phenomenon is		
(a) Sprain (b) Dislocation	n (c) Fracture (d) Tension	
175. Friction is lessened in ball-and –socket joint by		
(a) Coelomic fluid (b) Synovi	al fluid (c) Pericardial fluid (d) Mucin	
176. Axis vertebra is identified by		
(a) Sigmoid notch (b) Odontoblas	t (c) Odontoid process (d) Olecranon processs	
177. Largest synovial joint is		
(a) Hip joint	(b) Knee joint	
(c) Shoulder joint	(d) Ankle joint	
178. The movable skull bone is		
(a) Maxilla	(b) Vomer	
(c) Urostyle	(d) Pygostyle	
179. Tail vertebrae of birds form		
(a) Wish bone	(b) Chevron bone	
(c) Urostyle	(d) Pygostyle	
180. Which is not a function of bones?		
(a) Protection of vital organs	(b) Haemopoiesis	
(c) Muscle attachment	(d) Secretion of hormones	